نتایج جستجو برای: relative symmetric polynomials
تعداد نتایج: 501696 فیلتر نتایج به سال:
We study asymptotics of characters of the symmetric groups on a fixed conjugacy class. It was proved by Kerov that such a character can be expressed as a polynomial in free cumulants of the Young diagram (certain functionals describing the shape of the Young diagram). We show that for each genus there exists a universal symmetric polynomial which gives the coefficients of the part of Kerov char...
In this research announcement we present a new q-analog of a classical formula for the exponential generating function of the Eulerian polynomials. The Eulerian polynomials enumerate permutations according to their number of descents or their number of excedances. Our q-Eulerian polynomials are the enumerators for the joint distribution of the excedance statistic and the major index. There is a...
We derive inversion formulas involving orthogonal polynomials which can be used to find coefficients of differential equations satisfied by certain generalizations of the classical orthogonal polynomials. As an example we consider special symmetric generalizations of the Hermite polynomials.
We answer a question of K. Mulmuley: In [5] it was shown that the method of shifted partial derivatives cannot be used to separate the padded permanent from the determinant. Mulmuley asked if this “no-go” result could be extended to a model without padding. We prove this is indeed the case using the iterated matrix multiplication polynomial. We also provide several examples of polynomials with ...
A totally real polynomial in Z[x] with zeros α1 6 α2 6 · · · 6 αn has span αn − α1. Building on the classification of all characteristic polynomials of integer symmetric matrices having span less than 4, we obtain a classification of polynomials having span less than 4 that are the characteristic polynomial of a Hermitian matrix over some quadratic integer ring. We obtain as characteristic poly...
An identity of Chung, Graham and Knuth involving binomial coefficients and Eulerian numbers motivates our study of a class of polynomials that we call binomial-Eulerian polynomials. These polynomials share several properties with the Eulerian polynomials. For one thing, they are h-polynomials of simplicial polytopes, which gives a geometric interpretation of the fact that they are palindromic a...
Let R and S be two irreducible root systems spanning the same vector space and having the same Weyl group W , such that S (but not necessarily R) is reduced. For each such pair (R, S) we construct a family of W -invariant orthogonal polynomials in several variables, whose coefficients are rational functions of parameters q, t1, t2, . . . , tr, where r (= 1, 2 or 3) is the number of W -orbits in...
A geometric perspective is used to derive the entire family of Welch bounds. This perspective unifies a number of observations that have been made regarding tightness of the bounds and their connections to symmetric k-tensors, tight frames, homogeneous polynomials, and tdesigns. Index Terms – Frames, Grammian, Homogeneous polynomials, Symmetric tensors, t-designs, Welch bounds
We present several new and compact formulas for the modified integral form of Macdonald polynomials, building on “multiline queue” formula polynomials due to Corteel, Mandelshtam, Williams. also introduce a quasisymmetric analogue polynomials. These “quasisymmetric polynomials" refine (symmetric) specialize Schur defined by Haglund, Luoto, Mason, van Willigenburg.
We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary symmetric polynomial or a complete homogeneous symmetric polynomial. Thus, we generalize the classical Pieri’s rule for symmetric polynomials/Grassmann varietie...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید