نتایج جستجو برای: predictive models
تعداد نتایج: 1024605 فیلتر نتایج به سال:
The traditional approach to computational biophysics studies of molecular systems is brute force molecular dynamics simulations under the conditions of interest. The disadvantages of this approach are that the time and length scales that are accessible to computer simulations often do not reach biologically relevant scales. An alternative approach, which we call intuitive modeling, is hypothesi...
It is becoming increasingly important to learn from a partially-observed random matrix and predict its missing elements. We assume that the entire matrix is a single sample drawn from a matrix-variate t distribution and suggest a matrixvariate tmodel (MVTM) to predict those missing elements. We show that MVTM generalizes a range of known probabilistic models, and automatically performs model se...
Most machine learning, data mining and statistical methods rely on the assumption that the analyzed data points are independent and identically distributed (i.i.d.). More specifically, the individual examples included in the training data are assumed to be drawn independently from each other from the same probability distribution. However, cases where this assumption is violated can be easily f...
Predictive models of gene regulation Anshul Bharat Kundaje The regulation of gene expression plays a central role in the development and function of a living cell. A complex network of interacting regulatory proteins bind specific sequence elements in the genome to control the amount and timing of gene expression. The abundance of genome-scale datasets from different organisms provides an oppor...
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
Regression is one of the most important statistical tools in data analysis and study of the relationship between predictive variables and the response variable. in most issues, regression models and decision tress only can show the main effects of predictor variables on the response and considering interactions between variables does not exceed of two way and ultimately three-way, due to co...
Background & Objectives: In recent years, different decision support systems (DSS) have been used to predict and diagnose diseases. The purpose of this paper was to compare some DSSs and to evaluate their accuracy in predicting diabetes. Methods: In this research, determination and optimization of the weights of the neural network were undertaken using genetic algorithm and Levenberg-Marqua...
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید