where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . ,m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1, ∑m–2 i=1 βiη α–1 i < 1, D α 0+ is the standard Riemann–Liouville derivative. Here our nonlinearity f may be singular at u = 0. As an application of Green’s function, we give some multiple positive solutions for singular positone and semipositone boundary value problems by means of the Leray–Schauder nonlinear a...