نتایج جستجو برای: neuro fuzzy models

تعداد نتایج: 1002602  

2005
Rahib Hidayat Abiyev

This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are forme...

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

2012
A. Chaouachi R. M. Kamel K. Nagasaka

This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Functi...

2001
K. Chao

A neuro-fuzzy based image classification system that utilizes color-imaging features of poultry viscera in the spectral and spatial domains was developed in this study. Color images of 320 livers and hearts from normal, airsacculitis, cadaver, and septicemia chickens were collected in the poultry process plant. These images in red, green, and blue (RGB) color space were segmented and statistica...

2004
Golam Sorwar Ajith Abraham

Classification of texture patterns is one of the most important problems in pattern recognition. In this paper, we present a classification method based on the Discrete Cosine Transform (DCT) coefficients of texture images. As DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying the images using DCT, we used two popular soft computing t...

2011
Behnam Mehrkian Arash Bahar Ali Chaibakhsh

In order to characterize the behavior of nonlinear dynamic systems many different approaches have been proposed in recent years. One of the best black-box models employed to deal with system nonlinearities is the combination of artificial neural network (ANN) and fuzzy logic system (FLS), which is known as neuro-fuzzy system. However, the gradient-based nature of this combination causes some de...

2013
Mehrdad Madhoushi Abbas Namdar Aliabadi

This paper proposes a hybrid approach based on neuro fuzzy model and emotional learning for prediction of stock exchange market. Neuro fuzzy models are powerful in modeling and forecasting highly nonlinear and complex time series. The emotional Learning, which is successfully used in bounded rational decision making, is introduced as an appropriate method to achieve particular goals in the pred...

Journal: :CoRR 2004
Golam Sorwar Ajith Abraham

Classification of texture pattern is one of the most important problems in pattern recognition. In this paper, we present a classification method based on the Discrete Cosine Transform (DCT) coefficients of texture image. As DCT works on gray level image, the color scheme of each image is transformed into gray levels. For classifying the images using DCT we used two popular soft computing techn...

2006
Hansjörg Kutterer Stephanie BOEHM

The survey and modeling of the deformations of large structures is a major task in engineering geodesy. In this paper, a new procedure to describe and predict the deformations is presented and discussed which is based on Neuro-Fuzzy modeling. Neuro-Fuzzy methods are data driven; they deduce the model directly from the data. Hence, they are mostly convenient if there are no physical models avail...

2003
Giovanna Castellano Ciro Castiello Anna Maria Fanelli Corrado Mencar

In this paper, we propose a neuro-fuzzy modeling framework to discover fuzzy rules and its application to predict chemical properties of ashes produced by thermo-electric generators. The framework is defined by several sequential steps in order to obtain a good predictive accuracy and the readability of the discovered fuzzy rules. First, a feature selection procedure is applied to the available...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید