نتایج جستجو برای: music algorithm

تعداد نتایج: 796103  

Journal: :CoRR 2016
Keunwoo Choi György Fazekas Mark B. Sandler

We introduce a novel playlist generation algorithm that focuses on the quality of transitions using a recurrent neural network (RNN). The proposed model assumes that optimal transitions between tracks can be modelled and predicted by internal transitions within music tracks. We introduce modelling sequences of high-level music descriptors using RNNs and discuss an experiment involving different...

2014
Oriol Nieto Morwaread M. Farbood

This paper presents a method for discovering patterns of note collections that repeatedly occur in a piece of music. We assume occurrences of these patterns must appear at least twice across a musical work and that they may contain slight differences in harmony, timbre, or rhythm. We describe an algorithm that makes use of techniques from the music information retrieval task of music segmentati...

2007
E. Okumura I. Nagano Y. Yoshimura

Electromagnetic (EM) noise field distributions measured externally around electrical and electronic equipment have been used for localization and identification of the noise sources inside the equipment. For high frequencies (more than hundreds of MHz), the EM sources at finite distances have been localized by applying the techniques such as MUSIC [1], SPM [2], and holographic imaging [3], to t...

2002
Kai Renz

Many aspects of computer-based music notation have been previously discussed. The presented thesis deals with the process of converting a textual description of music into a conventional musical score that can be either printed or viewed on a computer screen. The chosen textual music representation language is GUIDO Music Notation, an adequate, human-readable format, which has been developed si...

2012
Guangyu Xia Roger B. Dannenberg Junyun Tay Manuela M. Veloso

Many robot dances are preprogrammed by choreographers for a particular piece of music so that the motions can be smoothly executed and synchronized to the music. We are interested in automating the task of robot dance choreography to allow robots to dance without detailed human planning. Robot dance movements are synchronized to the beats and reflect the emotion of any music. Our work is made u...

2017
Chen Cen

Music transcription has been a longtime challenging task even for human. It takes a significant amount of time and effort for an experienced musician to listen to a song or music and transcribe it into music sheets. Automatic Music Transcription (AMT) automates the process of transcribing musics and plays an important role in music information retrieval(MIR). Even though the research for AMT is...

2010
Kjell Lemström

This paper studies the problem of transposition and time-scale invariant (ttsi) polyphonic music retrieval in symbolically encoded music. In the setting, music is represented by sets of points in plane. We give two new algorithms. Applying a search window of size w and given a query point set, of size m, to be searched for in a database point set, of size n, our algorithm for exact ttsi occurre...

2012
Kwan Kim Jun Hee Lee

A singing voice separation system is a hard yet popular task in the field of music information retrieval (MIR). If successfully separated, a number of algorithms can be applied to vocal melody for any possible application. In this study, we applied a pitch estimation algorithm after separating a singing voice from background music based on the implementation of REPET [1]. Then we evaluated our ...

2013
Bruno Rocha Niels Bogaards Aline Honingh

This report describes the digital humanities project on music similarity. The project is a collaboration between the University of Amsterdam and audio software company Elephantcandy. The project’s aim was to investigate timbre and rhythm similarity and to develop an application that finds similar segments of music. In this report three models are described, one for structural segmentation, one ...

2017
Seyede Mahya Safavi Beth Lopour Pai H. Chou

Two techniques are proposed to alleviate the computational burden of MUltiple SIgnal Classification (MUSIC) algorithm applied to Electroencephalogram (EEG) source localization. A significant reduction was achieved by parsing the cortex surface into smaller regions and nominating only a few regions for the exhaustive search inherent in the MUSIC algorithm. The nomination procedure involves a dic...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->