Extending the Levy-Steinitz rearrangement theorem in Rn, which in turn extended Riemann’s theorem, Banaszczyk proved in 1990/93 that a metrizable, locally convex space is nuclear if and only if the domain of sums of every convergent series (i.e. the set of all elements in the space which are sums of a convergent rearrangement of the series) is a translate of a closed subspace of a special form....