For 1 1 ( ) ( )∈! m m m x = x ,...,x , y = y ,...,y we put ≤ x y iff i i x y ≤ for each { } 1 2 ∈ i M = , ,...,m ; ≤ x y iff ≤ i i x y for each i M ∈ , with x y; x < y ≠ iff i i x < y for each i M ∈ . We write + ∈! m x iff 0 ≥ x . For an arbitrary vector n x∈! and a subset J of the index set { } 1 2 n , ,..., , we denote by J x the vector with components j x , j J ∈ . Let ( ) μ X , Γ, be a fini...