نتایج جستجو برای: multi order fractional differential equations

تعداد نتایج: 1748668  

2015
A. Neamaty B. Agheli

Fractional differential equations have extensively used in physics, chemistry as well as engineering fields. Therefore, approximating the solution of differential equations of fractional order is necessary. Consequently, it is essential to approximate the solution of differential equations of fractional order. The piecewise quadratic polynomial function based method has been presented in this p...

‎In this paper‎, ‎a spectral Tau method for solving fractional Riccati‎ ‎differential equations is considered‎. ‎This technique describes‎ ‎converting of a given fractional Riccati differential equation to a‎ ‎system of nonlinear algebraic equations by using some simple‎ ‎matrices‎. ‎We use fractional derivatives in the Caputo form‎. ‎Convergence analysis of the proposed method is given an...

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...

In recent years, Fuzzy differential equations are very useful indifferent sciences such as physics, chemistry, biology and economy. It should be noted, that if the equations that appear to be uncertain, then take help of fuzzy logic at these equations. Considering that most of the time analytic solution of such equations and finding an exact solution has either high complexity or cannot be solv...

Journal: :international journal of industrial mathematics 0
m. mashoof‎ department of mathematics, lahijan branch, islamic azad university, lahijan, ‎iran.‎ a. h. refahi ‎sheikhani‎ department of mathematics, lahijan branch, islamic azad university, lahijan, ‎iran.‎

in recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. the following method is based on vector forms of haar-wavelet functions. in this paper, we will introduce one dimensional haar-wavelet functions and the haar-wavelet operational matrices of the fractional order integration. also the haar-wavelet operational matrice...

2017
YUJI LIU XIAOHUI YANG

Firstly, the surveys for studies on boundary value problems for higher order ordinary differential equations and for higher order fractional differential equations are given. Secondly a simple review for studies on solvability of boundary value problems for impulsive fractional differential equations is presented. Thirdly we propose four classes of higher order linear fractional differential eq...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید