نتایج جستجو برای: modified riemann liouville fractional derivatives
تعداد نتایج: 424307 فیلتر نتایج به سال:
in this paper, we use the riemann-liouville fractionalintegrals to establish some new integral inequalities related tochebyshev's functional in the case of two differentiable functions.
The existence and uniqueness of a local solution is proved for the incomplete Cauchy type problem to multi-term quasilinear fractional differential equations in Banach spaces with Riemann–Liouville derivatives bounded operators at them. Nonlinearity equation assumed be Lipschitz continuous dependent on lower order derivatives, which orders have same part as highest derivative. obtained abstract...
The Liouville and first Bogoliubov hierarchy equations with derivatives of noninteger order are derived. The fractional Liouville equation is obtained from the conservation of probability to find a system in a fractional volume element. This equation is used to obtain Bogoliubov hierarchy and fractional kinetic equations with fractional derivatives. Statistical mechanics of fractional generaliz...
The current research of fractional Sturm-Liouville boundary value problems focuses on the qualitative theory and numerical methods, much progress has been recently achieved in both directions. objective this paper is to explore a different route, namely, construction explicit asymptotic approximations for solutions. As study case, we consider problem with left right Riemann-Liouville derivative...
*Correspondence: [email protected] Department of Mathematics and Physical Sciences, Prince Sultan University, P.O. Box 66833, Riyadh, 11586, Saudi Arabia Abstract In this article, we extend fractional calculus with nonsingular exponential kernels, initiated recently by Caputo and Fabrizio, to higher order. The extension is given to both left and right fractional derivatives and integrals. ...
Finite differences, as a subclass of direct methods in the calculus of variations, consist in discretizing the objective functional using appropriate approximations for derivatives that appear in the problem. This article generalizes the same idea for fractional variational problems. We consider a minimization problem with a Lagrangian that depends on the left Riemann– Liouville fractional deri...
In this paper, we are concerned with the solvability for a class of nonlinear sequential fractional dynamical systems with damping infinite dimensional spaces, which involves fractional Riemann-Liouville derivatives. The solutions of the dynamical systems are obtained by utilizing the method of Laplace transform technique and are based on the formula of the Laplace transform of the Mittag-Leffl...
A class of second order approximations, called the weighted and shifted Grünwald difference operators, are proposed for Riemann-Liouville fractional derivatives, with their effective applications to numerically solving space fractional diffusion equations in one and two dimensions. The stability and convergence of our difference schemes for space fractional diffusion equations with constant coe...
In this paper, we consider a time-dependent diffusion problem with two-sided Riemann-Liouville fractional derivatives. By introducing a fractional-order flux as auxiliary variable, we establish the saddle-point variational formulation, based on which we employ a locally conservative mixed finite element method to approximate the unknown function, its derivative and the fractional flux in space ...
Finite differences, as a subclass of direct methods in the calculus of variations, consist in discretizing the objective functional using appropriate approximations for derivatives that appear in the problem. This article generalizes the same idea for fractional variational problems. We consider a minimization problem with a Lagrangian that depends only on the left Riemann–Liouville fractional ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید