نتایج جستجو برای: m additive functional equation
تعداد نتایج: 1361976 فیلتر نتایج به سال:
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
using the hyers-ulam-rassias stability method, weinvestigate isomorphisms in banach algebras and derivations onbanach algebras associated with the following generalized additivefunctional inequalitybegin{eqnarray}|af(x)+bf(y)+cf(z)| le |f(alpha x+ beta y+gamma z)| .end{eqnarray}moreover, we prove the hyers-ulam-rassias stability of homomorphismsin banach algebras and of derivations on banach ...
Let A be an algebra over the real or complex field F. An additive mapping d : A → A is said to be a left derivation resp., derivation if the functional equation d xy xd y yd x resp., d xy xd y d x y holds for all x, y ∈ A. Furthermore, if the functional equation d λx λd x is valid for all λ ∈ F and all x ∈ A, then d is a linear left derivation resp., linear derivation . An additive mapping G : ...
Stability of a Jensen type quadratic-additive functional equation under the approximately conditions
One of the interesting questions concerning the stability problems of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to the solution of the given functional equation? Such an idea was suggested in 1940 by Ulam 1 . The case of approximately additive mappings was solved by Hyers 2 . In 1978, Rassias 3 generalized Hye...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید