نتایج جستجو برای: loglinear
تعداد نتایج: 343 فیلتر نتایج به سال:
Randomized Response techniques have been investigated in privacy preserving categorical data analysis. However, the released distortion parameters can be exploited by attackers to breach privacy. In this paper, we investigate whether data mining or statistical analysis tasks can still be conducted on randomized data when distortion parameters are not disclosed to data miners. We first examine h...
Orthographic similarities across languages provide a strong signal for probabilistic decipherment, especially for closely related language pairs. The existing decipherment models, however, are not wellsuited for exploiting these orthographic similarities. We propose a log-linear model with latent variables that incorporates orthographic similarity features. Maximum likelihood training is comput...
Based upon a statistically trained speech translation system, in this study, we try to combine distinctive features derived from the two modules: speech recognition and statistical machine translation, in a loglinear model. The translation hypotheses are then rescored and translation performance is improved. The standard translation evaluation metrics, including BLEU, NIST, multiple reference w...
In Semantic Role Labeling (SRL), it is reasonable to globally assign semantic roles due to strong dependencies among arguments. Some relations between arguments significantly characterize the structural information of argument structure. In this paper, we concentrate on thematic hierarchy that is a rank relation restricting syntactic realization of arguments. A loglinear model is proposed to ac...
We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective use of priors in loglinear models, and (iv) finegrained modeling of linguistic and unknown word featur...
This paper addresses the problem of dynamic model parameter selection for loglinear model based statistical machine translation (SMT) systems. In this work, we propose a principled method for this task by transforming it to a test data dependent development set selection problem. We present two algorithms for automatic development set construction, and evaluated our method on several NIST data ...
For categorical data, the relationship between visual displays of the data and models is not very well explored, even though for categorical data and loglinear models strong relationships do exist. Starting from assessing odds ratios visually, interaction effects of variables can be examined using mosaic plots. Cumulative link models provide a way to describe trends between ordinal variables. I...
In Japanese dependency parsing, Kudo’s relative preference-based method (Kudo and Matsumoto, 2005) outperforms both deterministic and probabilistic CKY-based parsing methods. In Kudo’s method, for each dependent word (or chunk) a loglinear model estimates relative preference of all other candidate words (or chunks) for being as its head. This cannot be considered in the deterministic parsing me...
We present a shift-reduce CCG semantic parser. Our parser uses a neural network architecture that balances model capacity and computational cost. We train by transferring a model from a computationally expensive loglinear CKY parser. Our learner addresses two challenges: selecting the best parse for learning when the CKY parser generates multiple correct trees, and learning from partial derivat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید