نتایج جستجو برای: lignocellulosic biomass

تعداد نتایج: 65217  

2012
S. S. Abdullah S. Yusup

This paper aims to study decomposition behavior in pyrolytic environment of four lignocellulosic biomass (oil palm shell, oil palm frond, rice husk and paddy straw), and two commercial components of biomass (pure cellulose and lignin), performed in a thermogravimetry analyzer (TGA). The unit which consists of a microbalance and a furnace flowed with 100 cc (STP) min Nitrogen, N2 as inert. Heati...

2016
Marcus Foston Reichel Samuel Jian He Arthur J. Ragauskas

To fully realize the potential of lignocellulosic biomass as a renewable resource for the production of fuels, chemicals, and materials, an improved understanding of the chemical and molecular structures within biomass and how those structures are formed during biosynthesis and transformed during (thermochemical and biological) conversion must be developed. This effort will require analytical t...

2015

Technology is important because of the high cost of obtaining fermentable sugars efficiently from cellulosic biomass. Many microorganisms capable of producing cellulose and hemicellulose-degrading enzymes have been reported and characterized. Currently, fungal cellulases are prepared and utilized to saccharify cellulosic biomass. It is known that the fungus Trichoderma reesei is able to produce...

2017
Emma Ransom-Jones Alan J McCarthy Sam Haldenby James Doonan James E McDonald

The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in...

2013
Hanwu Lei Iwona Cybulska James Julson

The study focus was an examination of the hydrothermal pretreatment method applied to the lignocellulosic substrate, represented by the prairie cord grass, and comparison between different conditions based on the yield of glucose after enzymatic hydrolysis. The treatment did not involve any chemicals usage. Enzymatic hydrolysis was performed in order to examine the amount of glucose which was r...

2013
Zhiwei Gong Hongwei Shen Qian Wang Xiaobing Yang Haibo Xie Zongbao K Zhao

BACKGROUND Microbial lipid production by using lignocellulosic biomass as the feedstock holds a great promise for biodiesel production and biorefinery. This usually involves hydrolysis of biomass into sugar-rich hydrolysates, which are then used by oleaginous microorganisms as the carbon and energy sources to produce lipids. However, the costs of microbial lipids remain prohibitively high for c...

2014
Jijiao Zeng Deepak Singh Difeng Gao Shulin Chen

BACKGROUND A key focus in sustainable biofuel research is to develop cost-effective and energy-saving approaches to increase saccharification of lignocellulosic biomass. Numerous efforts have been made to identify critical issues in cellulose hydrolysis. Aerobic fungal species are an integral part of the carbon cycle, equip the hydrolytic enzyme consortium, and provide a gateway for understandi...

2012
Harivony Rakotoarivonina Béatrice Hermant Nina Monthe Caroline Rémond

BACKGROUND Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (w...

2018
Daniel Girma Mulat Silvia Greses Huerta Dayanand Kalyani Svein Jarle Horn

Background Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methan...

2008
CHARLES E BARBARA J. GOODMAN

Biological systems can convert renewable resources, including lignocellulosic biomass, starch crops, and carbon dioxide, into fuels, chemicals, and materials. Ethanol and other products are now derived from starch crops, such as corn. Enzyme-based technology is under development for conversion of lignocellulosic biomass (e.g., wood, grasses, and agricultural and municipal wastes) into fuel etha...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید