نتایج جستجو برای: laplacian sum eccentricity matrix
تعداد نتایج: 450946 فیلتر نتایج به سال:
This paper studies a generalization of the standard continuous-time consensus protocol, obtained by replacing the Laplacian matrix of the communication graph with the so-called deformed Laplacian. The deformed Laplacian is a second-degree matrix polynomial in the real variable s which reduces to the standard Laplacian for s equal to unity. The stability properties of the ensuing deformed consen...
Abstract. A signed graph Γ = (G, σ) consists of an unsigned graph G = (V, E) and a mapping σ : E → {+,−}. Let Γ be a connected signed graph and L(Γ),L(Γ) be its Laplacian matrix and normalized Laplacian matrix, respectively. Suppose μ1 ≥ · · · ≥ μn−1 ≥ μn ≥ 0 and λ1 ≥ · · · ≥ λn−1 ≥ λn ≥ 0 are the Laplacian eigenvalues and the normalized Laplacian eigenvalues of Γ, respectively. In this paper, ...
We define the product distance matrix of a tree and obtain formulas for its determinant and inverse. The results generalize known formulas for the exponential distance matrix. When we restrict the number of variables to two, we are naturally led to define a bivariate analogue of the laplacian matrix of an arbitrary graph. We also define a bivariate analogue of the Ihara-Selberg zeta function an...
In a connected graph G, the distance between two vertices of G is length shortest path these vertices. The eccentricity vertex u in largest and any other G. total-eccentricity index ?(G) sum eccentricities all this paper, we find extremal trees, unicyclic bicyclic graphs with respect to index. Moreover, conjugated trees
In this paper we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are una...
This paper studies a generalization of the standard continuous-time consensus protocol, obtained by replacing the Laplacian matrix of the communication graph with the so-called deformed Laplacian. The deformed Laplacian is a second-degree matrix polynomial in the real variable s which reduces to the standard Laplacian for s equal to unity. The stability properties of the ensuing deformed consen...
This paper studies a generalization of the standard continuous-time consensus protocol, obtained by replacing the Laplacian matrix of the communication graph with the so-called deformed Laplacian. The deformed Laplacian is a second-degree matrix polynomial in the real variable s which reduces to the standard Laplacian for s equal to unity. The stability properties of the ensuing deformed consen...
This paper describes a successful application of Matting Laplacian Matrix to the problem of generating high-resolution range images. The Matting Laplacian Matrix in this paper exploits the fact that discontinuities in range and coloring tend to co-align, which enables us to generate high-resolution range image by integrating regular camera image into the range data. Using one registered and pot...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید