نتایج جستجو برای: jordan zero product preserving map
تعداد نتایج: 666576 فیلتر نتایج به سال:
We show the space of expanding Blaschke products on S is compactified by a sphere of invariant measures, reminiscent of the sphere of geodesic currents for a hyperbolic surface. More generally, we develop a dynamical compactification for the Teichmüller space of all measure-preserving topological covering maps of S.
The phase space of an integrable volume-preserving map with one action is foliated by a oneparameter family of invariant tori. Perturbations lead to chaotic dynamics with interesting transport properties. We show that near a rank-one resonant torus the mapping can be reduced to a volume-preserving standard map. This map is a twist map only when the frequency map crosses the resonance curve tran...
Let $mathcal{A}$ be a unital Banach algebra, $mathcal{M}$ be a left $mathcal{A}$-module, and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$. We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$, then the following four conditions are equivalent: (i) $delta$ is a Jordan left de...
Pre-Jordan algebras were introduced recently in analogy with preLie algebras. A pre-Jordan algebra is a vector space A with a bilinear multiplication x · y such that the product x ◦ y = x · y + y · x endows A with the structure of a Jordan algebra, and the left multiplications L·(x) : y 7→ x · y define a representation of this Jordan algebra on A. Equivalently, x ·y satisfies these multilinear ...
For an arbitrary subset I of IR and for a function f defined on I, the number of zeros of f on I will be denoted by ZI(f) . In this paper we attempt to characterize all linear transformations T taking a linear subspace W of C(I) into functions defined on J (I, J ⊆ IR) such that ZI(f) = ZJ (Tf) for all f ∈ W .
In this paper, we study and analyze the algebraic structure of the circular cone. We establish a new efficient spectral decomposition, set up the Jordan algebra associated with the circular cone, and prove that this algebra forms a Euclidean Jordan algebra with a certain inner product. We then show that the cone of squares of this Euclidean Jordan algebra is indeed the circular cone itself. The...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید