نتایج جستجو برای: jordan generalized k derivation
تعداد نتایج: 576989 فیلتر نتایج به سال:
Let $A$ be an unital alternative $*$-algebra. Assume that contains a nontrivial symmetric idempotent element $e$ which satisfies $xA \cdot e = 0$ implies $x and (1_A - e) 0$. In this paper, it is shown $\Phi$ nonlinear $*$-Jordan-type derivation on A if only additive $*$-derivation. As application, we get result $W^{*}$-algebras.
In this note, the notion of generalized continuous K- frame in a Hilbert space is defined. Examples have been given to exhibit the existence of generalized continuous $K$-frames. A necessary and sufficient condition for the existence of a generalized continuous $K$-frame in terms of its frame operator is obtained and a characterization of a generalized continuous $K$-frame for $ mathcal{H} $ wi...
Let R be a ring and S a nonempty subset of R. Suppose that θ and φ are endomorphisms of R. An additive mapping δ : R → R is called a left (θ,φ)-derivation (resp., Jordan left (θ,φ)derivation) on S if δ(xy) = θ(x)δ(y)+φ(y)δ(x) (resp., δ(x2) = θ(x)δ(x)+φ(x)δ(x)) holds for all x,y ∈ S. Suppose that J is a Jordan ideal and a subring of a 2-torsion-free prime ring R. In the present paper, it is show...
Let A belong to an automorphism group, Lie algebra or Jordan algebra of a scalar product. When A is factored, to what extent do the factors inherit structure from A? We answer this question for the principal matrix square root, the matrix sign decomposition, and the polar decomposition. For general A, we give a simple derivation and characterization of a particular generalized polar decompositi...
In this paper we prove the following result, which is related to a classical result of Chernoff. Let X be a real or complex Banach space, let A(X) be a standard operator algebra on X and let L(X) be an algebra of all bounded linear operators on X. Suppose we have a linear mapping D : A(X) → L(X) satisfying the relation D(Am+n) = D(Am)An + AmD(An) for all A ∈ A(X) and some fixed integers m ≥ 1, ...
In this paper as a generalization of derivation and f -derivation on a lattice we introduce the notion of generalized (f, g)-derivation of a lattice. We give illustrative example. If the function g is equal to the function f then the generalized (f, g)-derivation is the f -derivation defined in [8]. Also if we choose the function f and g the identity functions both then the derivation we define...
In the present paper, we study simple algebras, which do not belong to well-known classes of algebras (associative alternative Lie Jordan etc.). The finite-dimensional over a field characteristic 0 without finite basis identities, constructed by Kislitsin, are such algebras. consider two algebras: seven-dimensional anticommutative algebra \(\mathcal{D}\) and central commutative \(\mathcal{C}\)....
We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra ”dilatonic” coordinate, whose rotation, Lorentz and conformal groups are SO(d−1), SO(d−1, 1)×SO(1, 1) and SO(d, 2)×SO(2, 1), respective...
We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra “dilatonic” coordinate, whose rotation, Lorentz and conformal groups are SO(d−1), SO(d−1, 1)×SO(1, 1) and SO(d, 2)×SO(2, 1), respective...
We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra “dilatonic” coordinate, whose rotation, Lorentz and conformal groups are SO(d−1), SO(d−1, 1)×SO(1, 1) and SO(d, 2)×SO(2, 1), respective...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید