نتایج جستجو برای: jacobian based kinematics
تعداد نتایج: 2957397 فیلتر نتایج به سال:
This paper is devoted to the application of Artificial Neural Networks (ANN) to the solution of the Inverse Kinematics (IK) problem for serial robot manipulators, in this study two networks were trained and compared to examine the effect of considering the Jacobian Matrix to the efficiency of the IK solution. Given the desired trajectory of the end effector of the manipulator...
This paper proposes a real-time trajectory generation algorithm for both arms of a humanoid robot. Since it is hard to find a closed form of inverse kinematics for each arm of seven degrees of freedom, the damped least-squares method is employed to obtain the inverse kinematics. The trajectory is generated by the minimum-jerk method to maximize the position accuracy. Considering the performance...
In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection. The three methods are described in some detail. An analysis is performed where the three methods ar...
Purpose – The purpose of this paper is to present the control of six degrees of freedom (PUMA560) robotic arm using visual servoing, based upon linear matrix inequality (LMI). The aim lies in developing such a method that neither involves camera calibration parameters nor inverse kinematics. The approach adopted in this paper includes transpose Jacobian control; thus, inverse of the Jacobian ma...
In its basic formulation, the inverse kinematics (IK) problem seeks to compute a set of joint angles such that the end of a given joint chain coincides with a certain position in space. Further constraints, such as orientation, velocity, and preferences for curvature, are possible, but beyond the scope of this project. In this report, we describe the basic forward and inverse kinematics problem...
Commercially available robotic prosthetic arms currently use independent joint control. An alternative controller involving only control of the hand in a Cartesian frame rather than controlling each joint independently is proposed and tested. An experimental 4DOF robotic arm was used as the platform for testing the proposed control approach. As opposed to joint control, Cartesian control requir...
In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection. The three methods are described in some detail. An analysis is performed where the three methods ar...
A novel 5-DoF parallel manipulator (PM) with two composite rotational/linear active legs is proposed and its kinematics and statics are studied systematically. First, a prototype of this PM is constructed and its displacement is analyzed. Second, the formulas are derived for solving the linear/angular velocity and acceleration of UPS composite active leg. Third, the Jacobian and Hessian matrice...
1 Copyright © 2008 by ASME 1. Address all correspondence to this author. ABSTRACT STriDER (Self-excited Tripedal Dynamic Experimental Robot) is a unique three-legged walking robot that utilizes its innovative tripedal gait to walk. Previous work on the kinematic analysis of STriDER mainly focused on solving the forward and inverse displacement problems. As a continuation, this paper addresses t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید