نتایج جستجو برای: independent componentanalysis ica

تعداد نتایج: 452116  

Journal: :Physiological measurement 2005
Christopher J James Christian W Hesse

Independent component analysis (ICA) is increasing in popularity in the field of biomedical signal processing. It is generally used when it is required to separate measured multi-channel biomedical signals into their constituent underlying components. The use of ICA has been facilitated in part by the free availability of toolboxes that implement popular flavours of the techniques. Fundamentall...

2012
Hemant P. Kasturiwale

Biomedical signals can arise from one or many sources including heart, brains and endocrine systems. Multiple sources poses challenge to researchers which may have contaminated with artifacts and noise. The analysis of these signals is important both for research and for medical diagnosis and treatment. The applications of Independent Component Analysis (ICA) to biomedical signals is a rapidly ...

2003
Önsen TOYGAR Adnan ACAN

In this paper, the performances of appearance-based statistical methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA) are tested and compared for the recognition of colored face images. Three sets of experiments are conducted for relative performance evaluations. In the first set of experiments, the recognition performanc...

2005
Ingo R. Keck Elmar Wolfgang Lang Salua Nassabay Carlos García Puntonet

In this paper we propose a new algorithm for the clustering of signals using incomplete independent component analysis (ICA). In the first step we apply the ICA to the dataset without dimension reduction, in the second step we reduce the dimension of the data to find clusters of independent components that are similar in their entries in the mixture matrix found by the ICA. We demonstrate that ...

2007
Katsuhiro Honda Hidetomo Ichihashi H. Ichihashi

Independent component analysis (ICA) is an unsupervised technique for blind source separation, and the ICA algorithms using nongaussianity as the measure of mutual independence have been also used for projection pursuit or visualization of multivariate data for knowledge discovery in databases (KDD). However, in real applications, it is often the case that we fail to extract useful latent varia...

2001
Harold Szu

Two mirror symmetric versions of the maximum entropy (MaxEnt) methodology are introduced and compared: (1) A posteriori MaxEnt Independent Component Analysis (ICA) H(V) was proposed by Bell, Sejnowski, Amari, Oja (BSAO) (early by Jutten & Herault, Comon and Cardoso (JHCC) in France). It is ambitious to factorize the unknown joint-probability density function (j-pdf) using the post processing al...

2003
Kuntal Sengupta Prabir Burman

Independent Component Analysis (ICA) has found a wide range of applications in signal processing and multimedia, ranging from speech cleaning to face recognition. This paper presents a non-parametric approach to the ICA problem that is robust towards outlier effects. The algorithm, for the first time in the field of ICA, adopts an intuitive and direct approach, focusing on the very definition o...

2002
Radu Mutihac Marc M. Van Hulle

The performance of six neuromorphic adaptive structurally different algorithms was analyzed in blind separation of independent artificially generated signals using the stationary linear independent component analysis (ICA) model. The estimated independent components were ranked and compared among different ICA approaches. All algorithms were run with different contrast functions, which were opt...

2000
Shiro Ikeda

One of the reasons ICA (Independent Component Analysis) became so popular is that ICA is a promising tools for a lot of applications. One of the attractive applications is the biological data analysis. There are a lot of works on neurobiological data analysis such as EEG (Electroencephalography), fMRI (functional Magnetic Resonance Imaging), and MEG (Magnetoencephalography), and they show inter...

Journal: :Informatica (Slovenia) 2011
Ganesh R. Naik Dinesh Kant Kumar

Independent Component Analysis (ICA), a computationally efficient blind source separation technique, has been an area of interest for researchers for many practical applications in various fields of science and engineering. This paper attempts to cover the fundamental concepts involved in ICA techniques and review its applications. A thorough discussion of the applications and ambiguities probl...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید