نتایج جستجو برای: hopf algebras
تعداد نتایج: 50155 فیلتر نتایج به سال:
We construct symmetric monoidal categoriesLRF ,LFG of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of LRF ,LFG, HLRF ,HLFG are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation...
We construct symmetric monoidal categoriesLRF ,LFG of rooted forests and Feynman graphs. These categories closely resemble finitary abelian categories, and in particular, the notion of Ringel-Hall algebra applies. The Ringel-Hall Hopf algebras of LRF ,LFG, HLRF ,HLFG are dual to the corresponding Connes-Kreimer Hopf algebras on rooted trees and Feynman diagrams. We thus obtain an interpretation...
We parameterize the finite-dimensional irreducible representations of a class of pointed Hopf algebras over an algebraically closed field of characteristic zero by dominant characters. The Hopf algebras we are considering arise in the work of N. Andruskiewitsch and the second author. Special cases are the multiparameter deformations of the enveloping algebras of semisimple Lie algebras where th...
We study the induction and restriction functor from a Hopf subalgebra of a semisimple Hopf algebra. The image of the induction functor is described when the Hopf subalgebra is normal. In this situation, at the level of characters this image is isomorphic to the image of the restriction functor. A criterion for subcoalgebras to be invariant under the adjoint action is given generalizing Masuoka’...
We introduce and study bimeasurings from pairs of bialge-bras to algebras. It is shown that the universal bimeasuring bialgebra construction, which arises from Sweedler's universal measuring coalgebra construction and generalizes the finite dual, gives rise to a contravariant functor on the category of bialgebras adjoint to itself. An interpretation of bimeasurings as algebras in the category o...
In [AS2] we classified a large class of finite-dimensional pointed Hopf algebras up to isomorphism. However the following problem was left open for Hopf algebras of of type A,D or E6, that is whose Cartan matrix is connected and allows a non-trivial automorphism of the corresponding Dynkin diagram. In this case we described the isomorphisms between two such Hopf algebras with the same Cartan ma...
We find a formula to compute the number of the generators, which generate the n-filtered space of Hopf algebra of rooted trees, i.e. the number of equivalent classes of rooted trees with weight n. Applying Hopf algebra of rooted trees, we show that the analogue of Andruskiewitsch and Schneider’s Conjecture is not true. The Hopf algebra of rooted trees and the enveloping algebra of the Lie algeb...
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal enveloping algebra of a finite dimensional Lie algebra g with a finite subgroup G of automorphisms of g is Calabi-Yau if and only if the universal en...
Recent work in perturbative quantum field theory has led to much study of the Connes-Kreimer Hopf algebra. Its (graded) dual, the Grossman-Larson Hopf algebra of rooted trees, had already been studied by algebraists. L. Foissy introduced a noncommutative version of the Connes-Kreimer Hopf algebra, which turns out to be self-dual. Using some homomorphisms defined by the author and W. Zhao, we de...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید