نتایج جستجو برای: homologous recombination repair system
تعداد نتایج: 2445402 فیلتر نتایج به سال:
High levels of organochlorines (OCs) have been measured in arctic char (Salvelinus alpinus) from Lake Ellasjøen on Bjørnøya, Norway (74.30°N, 19.0°E). In a nearby lake, Laksvatn, the OC-levels were low. A previous study has shown that had significantly higher DNA double strand breaks (DSBs) than Laksvatn. Even though there is increasing evidence genotoxic effects OCs, little known about OCs rep...
Maintaining genomic stability is critical for the prevention of disease. Numerous DNA repair pathways help to maintain genomic stability by correcting potentially lethal or disease-causing lesions to our genomes. Mounting evidence suggests that the post-translational modification sumoylation plays an important regulatory role in several aspects of DNA repair. The E3 SUMO ligase MMS21/NSE2 has g...
Excessive recombination between repeated, interspersed, and diverged DNA sequences is a potential source of genomic instability. We have investigated the possibility that a mechanism exists to suppress genetic exchange between these quasi-homologous (homeologous) sequences. We examined the role of the general mismatch repair system of Escherichia coli because previous work has shown that the mi...
In Trypanosoma brucei, DNA recombination is crucial in antigenic variation, a strategy for evading the mammalian host immune system found in a wide variety of pathogens. T.brucei has the capacity to encode >1000 antigenically distinct variant surface glycoproteins (VSGs). By ensuring that only one VSG is expressed on the cell surface at one time, and by periodically switching the VSG gene that ...
Homologous recombination is involved in the repair of DNA damage and collapsed replication fork, and is critical for the maintenance of genomic stability. Its process involves a network of proteins with different enzymatic activities. Human DNA helicase B (HDHB) is a robust 5'-3' DNA helicase which accumulates on chromatin in cells exposed to DNA damage. HDHB facilitates cellular recovery from ...
Psoralen photoreacts with DNA to form interstrand cross-links, which can be repaired by both nonmutagenic nucleotide excision repair and recombinational repair pathways and by mutagenic pathways. In the yeast Saccharomyces cerevisiae, psoralen cross-links are processed by nucleotide excision repair to form double-strand breaks (DSBs). In yeast, DSBs are repaired primarily by homologous recombin...
The process of homologous recombination is indispensable for both meiotic and mitotic cell division, and is one of the major pathways for double-strand break (DSB) repair. The human Rad54B protein, which belongs to the SWI2/SNF2 protein family, plays a role in homologous recombination, and may function with the Dmc1 recombinase, a meiosis-specific Rad51 homolog. In the present study, we found t...
DNA double-strand breaks can be repaired by non-homologous end-joining or homologous recombination. Which pathway is used depends on the balance between tumor suppressors 53BP1 and BRCA1 availability of an undamaged template for homology-directed repair. How cells switch from a 53BP1-dominated to BRCA1-governed recombination response as they progress through cell cycle incompletely understood. ...
In mammalian and budding yeast cells treated with genotoxic agents, different proteins implicated in detecting, signalling or repairing DNA lesions form nuclear foci. We studied foci formed by proteins involved in these processes in living fission yeast cells, which is amenable to genetic and molecular analysis. Using fluorescent tags, we analysed subnuclear localisations of the DNA damage chec...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید