نتایج جستجو برای: general autoregressive conditional heteroskedastic

تعداد نتایج: 783460  

2014
Sainan JIN Liangjun SU Sainan Jin Liangjun Su Zhijie Xiao

In this paper, we study adaptive nonparametric regression estimation in the presence of conditional heteroskedastic error terms. We demonstrate that both the conditional mean and conditional variance functions in a nonparametric regression model can be estimated adaptively based on the local profile likelihood principle. Both the one-step Newton-Raphson estimator and the local profile likelihoo...

2001
SHIQING LING MICHAEL MCALEER Shiqing Ling

This paper investigates the asymptotic theory for a vector autoregressive moving average–generalized autoregressive conditional heteroskedasticity ~ARMAGARCH! model+ The conditions for the strict stationarity, the ergodicity, and the higher order moments of the model are established+ Consistency of the quasimaximum-likelihood estimator ~QMLE! is proved under only the second-order moment conditi...

2009
MAURICE J. ROCHE KIERAN MCQUINN Maurice J. Roche

This paper uses a multivariate vector error-correction generalized autoregressive conditional heteroscedasticity model to investigate the effect of British grain prices on their Irish equivalents. We find that in the long run the law of one price holds and in the short run the model captures the salient features of Irish grain prices. The model is used to compute rolling forecasts of the condit...

2005
Günther Raidl Michael Hanke Andreas Heigl

This master thesis describes how to price options by means of Genetic Programming. The underlying model is the Generalized Autoregressive Conditional Heteroskedastic (GARCH) asset return process. The goal of this master thesis is to find a closed-form solution for the price of European call options where the underlying securities follow a GARCH process. The data are simulated over a wide range ...

Journal: :اقتصاد پولی مالی 0
مهدی صفدری فرشید پورشهابی

in this study, the relationship between inflation and economic growth of iran is conciliated with a perspective on uncertainty of inflation. we use a generalized autoregressive conditional heteroskedasticity (garch) model that make possible this advantage that conditional variance of error term changes along the time, also, vector error correction model (vecm) is stable. for surveying the co-in...

2017
Nikolaus Hautsch NIKOLAUS HAUTSCH Michael Lechner David Veredas Winfried Pohlmeier

In this paper, we suggest and evaluate specification tests to test the validity of the conditional mean function implied by Autoregressive Conditional Duration (ACD) models. We propose Lagrange multiplier tests against sign bias alternatives, various types of conditional moment tests and integrated conditional moment tests which are consistent against all possible alternatives. In a Monte-Carlo...

2016
Florian Ziel Carsten Croonenbroeck Daniel Ambach

In this article we present an approach that enables joint wind speed and wind power forecasts for a wind park. We combine a multivariate seasonal time varying threshold autoregressive moving average (TVARMA) model with a power threshold generalized autoregressive conditional heteroscedastic (power-TGARCH) model. The modeling framework incorporates diurnal and annual periodicity modeling by peri...

The paper examines the issue of hedging in energy markets. The objective of this study is to select an optimal model that will provide the highest price risk reduction for the selected commodities. We apply the ordinary least squares methods, autoregressive model, autoregressive conditional heteroscedasticity and copula to calculate the appropriate dynamic minimum-variance hedge ratio. The obje...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده مهندسی صنایع 1385

پیش بینی ریسک سهام توسط روش garch(1,1) در این تحقیق فراریت (انحراف معیار استاندارد بازده) که رایج ترین معیار برای سنجش ریسک می باشد، برای بازده سهام (ناشی از تفاوت قیمت سهم در دو زمان متفاوت) توسط روش garch(1,1) یا generalized autoregressive conditionally heteroskedastic با پارامترهای p=1 و q=1 پیش بینی می شود.برای این کار داده های مربوط به قیمت سهام و به دو قسمت تقسیم می شوند: in-sample و out...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید