نتایج جستجو برای: fuzzy linguistic aggregation

تعداد نتایج: 202637  

Journal: :Appl. Soft Comput. 2014
Patrizia Pérez-Asurmendi Francisco Chiclana

Majorities based on difference of votes and their extension, majorities based on difference in support, were introduced in social choice voting as tools to implement the crisp preference values (votes) and the intensities of preference provided by voters when comparing pairs of alternatives, respectively, with the aim to declare which alternative is socially preferred. Moreover, these rules req...

Journal: :Inf. Sci. 2014
Hongbin Liu Rosa M. Rodríguez

Decision making is a process common to human beings. The uncertainty and fuzziness of problems demand the use of the fuzzy linguistic approach to model qualitative aspects of problems related to decision. The recent proposal of hesitant fuzzy linguistic term sets supports the elicitation of comparative linguistic expressions in hesitant situations when experts hesitate among different linguisti...

2006
Zeshui Xu

In this paper, the multi-person decision making problems with various different types of incomplete linguistic preference relations are studied. Some new concepts, including incomplete uncertain linguistic preference relation, incomplete triangular fuzzy linguistic preference relation, incomplete trapezoid fuzzy linguistic preference relation, expected incomplete linguistic preference relation ...

Journal: :IEEE Trans. Systems, Man, and Cybernetics, Part A 1997
Francisco Herrera Enrique Herrera-Viedma

The aim of this paper is to model the processes of the aggregation of weighted information in a linguistic framework. Three aggregation operators of weighted linguistic information are presented: linguistic weighted disjunction (LWD) operator, linguistic weighted conjunction (LWC) operator, and linguistic weighted averaging (LWA) operator. A study of their axiomatics is presented to demonstrate...

Journal: :Computational & Applied Mathematics 2022

In this article, we have introduced a new linguistic generalized spherical fuzzy set by combining the idea of and set. Linguistic is described positive, neutral negative membership degrees with condition that square sum its less than or equal to 3 which deal uncertain imprecise information in decision making much more suitable way. We discussed some basic operations sets score accuracy function...

1999
Ryszard Kowalczyk

Most fuzzy systems including fuzzy decision support and fuzzy control systems provide out­ puts in the form of fuzzy sets that represent the inferred conclusions. Linguistic interpretation of such outputs often involves the use of linguistic approximation that assigns a linguistic label to a fuzzy set based on the predefined primary terms, linguistic modifiers and linguistic connectives. More g...

1995
F. Herrera E. Herrera-Viedma

The aim of this paper is to model the processes of the aggregation of weighted information in a linguistic framework. Three aggregation operators of weighted linguistic information are presented: linguistic weighted disjunction (LWD) operator, linguistic weighted conjunction (LWC) operator and linguistic weighted averaging (LWA) operator. A study of their axiomatic is presented to demonstrate t...

2009
Van Hung Le Fei Liu Hongen Lu

Information to be stored in databases is often fuzzy. Two important issues in research in this field are the representation of fuzzy information in a database and the provision of flexibility in database querying, especially via including linguistic terms in human-oriented queries and returning results with matching degrees. Fuzzy linguistic logic programming (FLLP), where truth values are ling...

Journal: :JCIT 2010
Juchi Hou

With respect to multiple attribute decision making problem with triangular fuzzy linguistic information, in which the attribute weights and expert weights take the form of real numbers, and the preference values take the form of triangular fuzzy linguistic variables, a operator for aggregating triangular fuzzy linguistic variables, such as the fuzzy linguistic weighted harmonic mean (FLWHM) ope...

Journal: :Axioms 2021

Fermatean fuzzy linguistic (FFL) set theory provides an efficient tool for modeling a higher level of uncertain and imprecise information, which cannot be represented using intuitionistic (IFL)/Pythagorean (PFL) sets. On the other hand, scale function (LSF) is better way to consider semantics terms during evaluation process. It worth noting that existing operational laws aggregation operators (...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->