نتایج جستجو برای: forecasting error

تعداد نتایج: 292207  

2012
Ricardo Marquez Carlos F. M. Coimbra

This work presents an alternative metric for evaluating the quality of solar forecasting models. Some conventional approaches use quantities such as the root-mean-squareerror (RMSE) and/or correlation coefficients to evaluate model quality. The direct use of statistical quantities to assign forecasting quality can be misleading because these metrics do not convey a measure of the variability of...

Journal: :CoRR 2017
Tinghui Ouyang Yusen He Huajin Li Zhiyu Sun Stephen Baek

The scheduling and operation of power system becomes prominently complex and uncertain, especially with the penetration of distributed power. Load forecasting matters to the effective operation of power system. This paper proposes a novel deep learning framework to forecast the short-term grid load. First, the load data is processed by Box-Cox transformation, and two parameters (electricity pri...

2003
Don M. Miller Dan Williams

3 We examine the effect of damping X-12-ARIMA's estimated seasonal variation on the accuracy of its seasonal adjustments of time series. Two methods for damping seasonals are proposed. In a simulation experiment, we generated time series data for each of 90 distinct experimental conditions that, in aggregate, characterize the variety of monthly series in the M3-competition. X-12-ARIMA consisten...

Journal: Pollution 2019

The present study aims at developing a forecasting model to predict the next year’s air pollution concentrations in the atmosphere of Iran. In this regard, it proposes the use of ARIMA, SVR, and TSVR, as well as hybrid ARIMA-SVR and ARIMA-TSVR models, which combined the autoregressive part of the autoregressive integrated moving average (ARIMA) model with the support vector regression technique...

2018
Cong Feng Jie Zhang

Abstract—With the increasing penetration of solar power into power systems, forecasting becomes critical in power system operations. In this paper, an hourly-similarity (HS) based method is developed for 1-hour-ahead (1HA) global horizontal irradiance (GHI) forecasting. This developed method utilizes diurnal patterns, statistical distinctions between different hours, and hourly similarities in ...

2017
Krzysztof Gajowniczek Tomasz Ząbkowski

Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand ...

2005
David F Hendry Kirstin Hubrich

Forecasting Economic Aggregates by Disaggregates* We explore whether forecasting an aggregate variable using information on its disaggregate components can improve the prediction mean squared error over first forecasting the disaggregates and then aggregating those forecasts, or, alternatively, over using only lagged aggregate information in forecasting the aggregate. We show theoretically that...

2015
Ming-jun Deng Shiru Qu

Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting...

Journal: :IJBIS 2013
Sadia Zahin Hasan Habibul Latif Sanjoy Kumar Paul Abdullahil Azeem

Power demand forecasting is a significant factor in the planning and economic and secure operation of modern power system. This research work has compared different forecasting techniques and opted to find out better technique in context of power generation, which varies rapidly from time to time. The dataset has been generated from yearly demand of electricity of Bangladesh for last five years...

1999
Myles Allen Jamie Kettleborough David Stainforth

We review various interpretations of the phrase “model error”, choosing to focus here on how to quantify and minimise the cumulative effect of model “imperfections” that either have not been eliminated because of incomplete observations/understanding or cannot be eliminated because they are intrinsic to the model’s structure. We will not provide a recipe for eliminating these imperfections, but...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید