let $r$ be an arbitrary ring with identity and $m$ a right $r$-module with $s=$ end$_r(m)$. the module $m$ is called {it rickart} if for any $fin s$, $r_m(f)=se$ for some $e^2=ein s$. we prove that some results of principally projective rings and baer modules can be extended to rickart modules for this general settings.