نتایج جستجو برای: feed forward neural network
تعداد نتایج: 987291 فیلتر نتایج به سال:
We propose an efficient hybrid neural network for chaotic time series prediction. The hybrid neural network is constructed by a traditional feed-forward network, which is learned by using the backpropagation and a local model, which is implemented as a time delay embedding. The feed-forward network performs as the global approximation and the local model works as the local approximation. Experi...
evaporation is one of the most important components of hydrologic cycle.accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. in order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. using direct methods require installing meteorological stations andinstruments ...
In this paper, a method is proposed for Multiple Response Optimization (MRO) by neural networks and uses desirability of each response for forecasting. The used neural network is a feed forward back propagation one with two hidden layers. The numbers of neurons in the hidden layers are determined using MSE criterion for training and test data. The numbers on neurons of the first layer last laye...
Background & Aims of the Study: A feed forward artificial neural network (FFANN) was developed to predict the efficiency of total petroleum hydrocarbon (TPH) removal from a contaminated soil, using soil washing process with Tween 80. The main objective of this study was to assess the performance of developed FFANN model for the estimation of TPH removal. Mater...
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
Forecasting a hydrologic time series has been one of the most complicated tasks owing to the wide range of data, the uncertainties in the parameters influencing the time series and also due to the non availability of adequate data. Recently, Artificial Neural Networks (ANNs) have become quite popular in time series forecasting in various fields. This paper demonstrates the use of ANNs to foreca...
The main objective of this paper is testing the reliability of a two dimensional numerical model of Solid Oxide Fuel cell using COMSOL (FEMLAB 3.1) software against neural network model. In the proposed study, two layers feed forward neural network was examined for the purpose of modeling the Solid Oxide Fuel Cell (SOFC) system. The examined neural network model with one hidden layer of five no...
This paper demonstrates classification of PQ events utilizing wavelet transform (WT) energy features by artificial neural network (ANN) and SVM classifiers. The proposed scheme utilizes wavelet based feature extraction to be used for the artificial neural networks in the classification. Six different PQ events are considered in this study. Three types of neural network classifiers such as feed ...
considering the importance of cd and u as pollutants of the environment, this study aims to predict the concentrations of these elements in a stream sediment from the eshtehard region in iran by means of a developed artificial neural network (ann) model. the forward selection (fs) method is used to select the input variables and develop hybrid models by ann. from 45 input candidates, 13 and 14 ...
in this paper we propose a method for solving some well-known classes of lane-emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. the proposed approach is based on an unsupervised combined articial neural networks (ucann) method. firstly, the trial solutions of the differential equations are written in the form of feed-forward neural networks co...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید