نتایج جستجو برای: fe3o4 nanoparticles
تعداد نتایج: 110159 فیلتر نتایج به سال:
Magnetic iron oxide nanoparticles (Fe3O4 MNPs) are among the most useful metal nanoparticles for multiple applications across a broad spectrum in the biomedical field, including the diagnosis and treatment of cancer. In previous work, we synthesized and characterized Fe3O4 MNPs using a simple, rapid, safe, efficient, one-step green method involving reduction of ferric chloride solution using br...
BACKGROUND Nanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities. The biological system being extremely critical requires the fundamental understanding on the influence of inorganic nanoparticles on cellular growth and functions. Our study was aimed to find out the effect of iron ox...
Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (F...
PURPOSE To achieve simultaneous imaging and therapy potentials, targeted fluoromagnetic nanoparticles were synthesized and examined in human breast cancer MCF-7 cells. METHODS Fe3O4 nanoparticles (NPs) were synthesized through thermal decomposition of Fe(acac)3. Then, magnetic nanoparticles (MNPs) modified by dopamine-poly ethylene glycol (PEG)-NH2; finally, half equivalent fluorescein isothi...
This study illustrates the directed self-assembly of mesoporous TiO2 with magnetic properties due to its colloidal crystal structure with Fe3O4. The Fe3O4 nanoparticles were synthesized using co-precipitation techniques to a size of 28.2 nm and a magnetic saturation of 66.9 emu g(-1). Meanwhile, mesoporous titania nanoparticles (MTNs) with a particle diameter of 373 nm, a specific surface area ...
In the present work, magnetic zeolitehave been synthesized by insitu method using combination of iron oxide nanoparticlesFe3O4 and clinoptilolite. Fe3O4nanoparticleshave been synthesized electrochemically and then clinoptilolitewas added to solution. The Fe3O4 nanoparticles synthesized at the temperature of 90° C with applying the potential of 8V for 1800 seconds. The synthesized nanocomposite ...
We have successfully demonstrated a facile, solvent-free synthesis of highly crystalline and monodisperse Fe3O4 nanocrystallites at ambient temperature avoiding any heating. Solid state reaction of inorganic Fe(ll) and Fe(ll) salts with NaOH was found to produce highly crystalline Fe3O4 nanoparticles. The reaction, if carried out in the presence of surfactant such as oleic acid-oleylamine adduc...
We present an in situ experimental investigation of the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm as a function of oxygen exposure (0-80 L), using X-ray photoemission electron microscopy. The X-ray absorption spectroscopy results show that, irrespective of size and magnetic state, the early stages of the Fe nanoparticle oxidation occu...
fe3o4 nanoparticles were synthesizedviaa simple chemical reaction between fecl2.4h2o and fe(no3)3.9h2o under nitrogen atmosphere at room temperature, and then nanoparticles were added to cellulose acetate (ca) polymer. the influence of nanoparticles on the thermal properties of ca polymeric matrix was studied using thermogravimetric analysis (tga). nanostructures were characterized by x-ray dif...
n-sodium acrylate-o-carboxymethyl chitosan [cmch-g-paa(na)] bound fe3o4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. cmch-g-paa (na) was obtained by grafting of sodium polyacrylate on o-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegradability properties. a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید