نتایج جستجو برای: expanded wiener index
تعداد نتایج: 460793 فیلتر نتایج به سال:
let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
The Wiener index, denoted byW (G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, W (G) = 1 2 ∑ u,v∈V (G) d(u, v). In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.
The Wiener index of a graph G is defined to be 2 , ( ) ( , ), u V G d u ∈ ∑ X X where d(u, X) is the distance between the vertices u and X in G. In this paper, we obtain an explicit expression for the Wiener index of an odd graph.
The Wiener index, defined as the total sum of distances in a graph, is one of the most popular graph-theoretical indices. Its average value has been determined for several classes of trees, giving an asymptotics of the form Kn5/2 for some K. In this note, it is shown how the method can be extended to trees with restricted degrees. Particular emphasis is placed on chemical trees – trees with max...
Abstract The n-th order Wiener index of a molecular graph G was put forward by Estrada et al. [New J. Chem. 22 (1998) 819] as ( ) 1 ( , ) n n x W H G x where ( , ) H G x is the Hosoya polynomial. Recently Brückler et al. [Chem. Phys. Lett. 503 (2011) 336] considered a related graph invariant, ( ) 1 1 (1/ !) ( ( , )) / n n n n x W n d x H G x d x . For n=1, both W and W reduce to the ordinary W...
the padmakar-ivan (pi) index is a first-generation topological index (ti) based on sums overall edges between numbers of edges closer to one endpoint and numbers of edges closer to theother endpoint. edges at equal distances from the two endpoints are ignored. an analogousdefinition is valid for the wiener index w, with the difference that sums are replaced byproducts. a few other tis are discu...
The Wiener index W is the sum of distances between all pairs of vertices of a (connected) graph. Hexagonal systems (HS’s) are a special type of plane graphs in which all faces are bounded by hexagons. These provide a graph representation of benzenoid hydrocarbons and thus find applications in chemistry. The paper outlines the results known for W of the HS: method for computation of W , expressi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید