نتایج جستجو برای: enology in addition

تعداد نتایج: 16992864  

Journal: :Discrete & Computational Geometry 2012
Christophe Weibel

It is known that in the Minkowski sum of r polytopes in dimension d, with r < d, the number of vertices of the sum can potentially be as high as the product of the number of vertices in each summand [2]. However, the number of vertices for sums of more polytopes was unknown so far. In this paper, we study sums of polytopes in general orientations, and show a linear relation between the number o...

Journal: :Inf. Process. Lett. 1998
Sándor P. Fekete William R. Pulleyblank

We consider the problem of traveling the contour of the set of all points that are within distance 1 of a connected planar curve arrangement P, forming an embedding of the graph G. We show that if the overall length of P is L, there is a closed roundtrip that visits all points of the contour and has length no longer than 2L + 2n. This result carries over in a more general setting: if R is a com...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه رازی - دانشکده علوم 1390

abstract ion selective electrodes (ises) are electrochemical sensors that respond selectivity to the activity of ionic species. an ion-selective electrode is an electrochemical device that uses a thin selective membrane or film as the recognition element, and is an electrochemical half-cell equivalent to other half-cells of the zeroth (inert metal in a redox electrolyte). in common methods o...

2008
Tadao Oda

submitted at the Oberwolfach Conference “Combinatorial Convexity and Algebraic Geometry” 26.10–01.11, 1997 Throughout, we fix the notation M := Z and MR := R . Given convex lattice polytopes P, P ′ ⊂ MR, we have (M ∩ P ) + (M ∩ P ) ⊂ M ∩ (P + P ), where P + P ′ is the Minkowski sum of P and P , while the left hand side means {m+m | m ∈ M ∩ P,m ∈ M ∩ P }. Problem 1 For convex lattice polytopes P...

Journal: :Combinatorica 2012
Paul N. Balister Béla Bollobás

In this paper we have shall generalize Shearer’s entropy inequality and its recent extensions by Madiman and Tetali, and shall apply projection inequalities to deduce extensions of some of the inequalities concerning sums of sets of integers proved recently by Gyarmati, Matolcsi and Ruzsa. We shall also discuss projection and entropy inequalities and their connections.

Journal: :Discrete & Computational Geometry 2009
Efi Fogel Dan Halperin Christophe Weibel

We present a tight bound on the exact maximum complexity of Minkowski sums of polytopes in R. In particular, we prove that the maximum number of facets of the Minkowski sum of k polytopes with m1,m2, . . . ,mk facets respectively is bounded from above by

Journal: :Discrete & Computational Geometry 2012
Menelaos I. Karavelas Eleni Tzanaki

We derive tight bounds for the maximum number of k-faces, 0 ≤ k ≤ d − 1, of the Minkowski sum, P1 ⊕ P2, of two ddimensional convex polytopes P1 and P2, as a function of the number of vertices of the polytopes. For even dimensions d ≥ 2, the maximum values are attained when P1 and P2 are cyclic d-polytopes with disjoint vertex sets. For odd dimensions d ≥ 3, the maximum values are attained when ...

Journal: :Electr. J. Comb. 2008
Friedrich Eisenbrand János Pach Thomas Rothvoß Nir B. Sopher

Let P and Q be finite sets of points in the plane. In this note we consider the largest cardinality of a subset of the Minkowski sum S ⊆ P ⊕ Q which consist of convexly independent points. We show that, if |P | = m and |Q| = n then |S| = O(m2/3n2/3 + m + n).

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید