نتایج جستجو برای: double roman domatic number
تعداد نتایج: 1396583 فیلتر نتایج به سال:
the aim of this paper is to introduce and study a new concept ofstrong double $(a)_ {delta}$-convergent sequence offuzzy numbers with respect to an orlicz function and also someproperties of the resulting sequence spaces of fuzzy numbers areexamined. in addition, we define the double$(a,delta)$-statistical convergence of fuzzy numbers andestablish some connections between the spaces of stron...
Given a graph G, we say that a subset D of the vertex set V is a dominating set if it is near all the vertices, in that every vertex outside of D is adjacent to a vertex in D. A domatic k-partition of G is a partition of V into k dominating sets. In this paper, we will consider issues of computability related to domatic partitions of computable graphs. Our investigation will center on answering...
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. The Roman reinforc...
A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of f is w(f) = ∑ v∈V f(v). The Roman domination number is the minimum weight of an RDF in G. It is known that for every graph G, the Roman domination number of G is bounded above...
The three domatic number problem asks whether a given undirected graph can be partitioned into at least three dominating sets, i.e., sets whose closed neighborhood equals the vertex set of the graph. Since this problem is NP-complete, no polynomial-time algorithm is known for it. The naive deterministic algorithm for this problem runs in time 3n, up to polynomial factors. In this paper, we desi...
We prove a new structural property regarding the “skyline” of uniform radius disks and use this to derive a number of new sequential and distributed approximation algorithms for well-known optimization problems on unit disk graphs (UDGs). Specifically, the paper presents new approximation algorithms for two problems: domatic partition and weighted minimum dominating set (WMDS) on UDGs, both of ...
A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. The Roman domination subdivision number sdγR(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order t...
Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If ∑ x∈N[v] f (x) ≥ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed dominating function on G. A set {f1, f2, . . . , fd} of signed dominating functions on Gwith the property that ∑d i=1 fi(x) ≤ 1 for each x ∈ V (G), is called a signed dominating fa...
LetD = (V,A) be a finite and simple digraph. A Roman dominating function (RDF) on a digraph D is a labeling f : V (D) → {0, 1, 2} such that every vertex with label 0 has a in-neighbor with label 2. The weight of an RDF f is the value ω(f) = ∑ v∈V f(v). The Roman domination number of a digraph D, denoted by γR(D), equals the minimum weight of an RDF on D. In this paper we present some sharp boun...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید