نتایج جستجو برای: domination polynomial
تعداد نتایج: 104573 فیلتر نتایج به سال:
The domination number of a graph G = (V,E) is the minimum cardinality of any subset S ⊂ V such that every vertex in V is in S or adjacent to an element of S. Finding the domination numbers of m by n grids was an open problem for nearly 30 years and was finally solved in 2011 by Goncalves, Pinlou, Rao, and Thomassé. Many variants of domination number on graphs, such as double domination number a...
It is well known that the coefficients of matching polynomial are unimodal. Unimodality (or their absolute values) other graph polynomials has been studied as well. One way to prove unimodality real-rootedness. Recently I. Beaton and J. Brown (2020) proved for almost all graphs domination form a unimodal sequence, C. Barton, D. Pike forest (aka acyclic polynomial) real-rooted iff G forest. Let ...
In this paper, we survey some new results in four areas of domination in graphs, namely: (1) the toughness and matching structure of graphs having domination number 3 and which are “critical” in the sense that if one adds any missing edge, the domination number falls to 2; (2) the matching structure of graphs having domination number 3 and which are “critical” in the sense that if one deletes a...
Given a graph G = (V, E), the subdivision of an edge e = uv ∈ E(G) means the substitution of the edge e by a vertex x and the new edges ux and xv. The domination subdivision number of a graph G is the minimum number of edges of G which must be subdivided (where each edge can be subdivided at most once) in order to increase the domination number. Also, the domination multisubdivision number of G...
In this article we study some variants of the domination concept attending to the connectivity of the subgraph generated by the dominant set. This study is restricted to maximal outerplanar graphs. We establish tight combinatorial bounds for connected domination, semitotal domination, independent domination and weakly connected domination for any n-vertex maximal outerplaner graph.
In this paper, we introduce the concept of k-power domination which is a common generalization of domination and power domination. We extend several known results for power domination to k-power domination. Concerning the complexity of the k-power domination problem, we first show that deciding whether a graph admits a k-power dominating set of size at most t is NP-complete for chordal graphs a...
In this paper, we provide a new upper bound for the α-domination number. This result generalises the well-known Caro-Roditty bound for the domination number of a graph. The same probabilistic construction is used to generalise another well-known upper bound for the classical domination in graphs. We also prove similar upper bounds for the α-rate domination number, which combines the concepts of...
In this note the split domination number of the Cartesian product of two paths is considered. Our results are related to [2] where the domination number of Pm¤Pn was studied. The split domination number of P2¤Pn is calculated, and we give good estimates for the split domination number of Pm¤Pn expressed in terms of its domination number.
We provide a simple constructive characterization for trees with equal domination and independent domination numbers, and for trees with equal domination and total domination numbers. We also consider a general framework for constructive characterizations for other equality problems.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید