نتایج جستجو برای: cost sensitive learning
تعداد نتایج: 1230363 فیلتر نتایج به سال:
A large body of research in machine learning is concerned with supervised learning from examples. The examples are typically represented as vectors in a multi-dimensional feature space (also known as attribute-value descriptions). A teacher partitions a set of training examples into a finite number of classes. The task of the learning algorithm is to induce a concept from the training examples....
For many real-life applications, such as medical diagnosis, cost of a decision is an important practical criterion which can not be ignored. The state-of-the-art C4.5 algorithm for inductive learning was not developed with this criterion in mind. However, some well-developed approaches exist that induce decision tree, giving importance to the cost criterion. This paper presents a general framew...
The imbalanced class distribution is one of the main issue in data mining. This problem exists in multi class imbalance, when samples containing in one class are greater or lower than that of other classes. Most existing imbalance learning techniques are only designed and tested for two-class scenarios. The new negative correlation learning (NCL) algorithm for classification ensembles, called A...
Machine learning community is not only interested in maximizing classification accuracy, but also in minimizing the distances between the actual and the predicted class. Some ideas, like the cost-sensitive learning approach, are proposed to face this problem. In this paper, we propose two greedy wrapper forward cost-sensitive selective naive Bayes approaches. Both approaches readjust the probab...
Predictive models are often used for real-time decision making. However, typical machine learning techniques ignore feature evaluation cost, and focus solely on the accuracy of the machine learning models obtained utilizing all the features available. We develop algorithms and indexes to support cost-sensitive prediction, i.e., making decisions using machine learning models taking feature evalu...
background: myocardial infarction (mi) occurs due to heart muscle death that costs like human life, which is higher than the treatment costs. this study aimed to present an mi prediction model using classification data mining methods, which consider the imbalance nature of the problem. methods: we enrolled 455 healthy and 295 myocardial infarction cases of visitors to shahid madani specialized ...
A Hybrid Approach Using Oversampling Technique and Cost-Sensitive Learning for Bankruptcy Prediction
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید