نتایج جستجو برای: convex optimization
تعداد نتایج: 358281 فیلتر نتایج به سال:
We focus on the problem of minimizing a convex function f over a convex set S given T queries to a stochastic first order oracle. We argue that the complexity of convex minimization is only determined by the rate of growth of the function around its minimizer xf,S , as quantified by a Tsybakov-like noise condition. Specifically, we prove that if f grows at least as fast as ‖x − xf,S‖ around its...
A new nonmonotone algorithm is proposed and analyzed for unconstrained nonlinear optimization. The nonmonotone techniques applied in this algorithm are based on the estimate sequence proposed by Nesterov (Introductory Lectures on Convex Optimization: A Basic Course, 2004) for convex optimization. Under proper assumptions, global convergence of this algorithm is established for minimizing genera...
A novel linear feature selection algorithm is presented based on the global minimization of a data-dependent generalization error bound. Feature selection and scaling algorithms often lead to non-convex optimization problems, which in many previous approaches were addressed through gradient descent procedures that can only guarantee convergence to a local minimum. We propose an alternative appr...
We focus on the problem of minimizing a convex function f over a convex set S given T queries to a stochastic first order oracle. We argue that the complexity of convex minimization is only determined by the rate of growth of the function around its minimizer xf,S , as quantified by a Tsybakov-like noise condition. Specifically, we prove that if f grows at least as fast as ‖x − xf,S‖ around its...
Abstract. In this paper we derive by means of the duality theory necessary and sufficient optimality conditions for convex optimization problems having as objective function the composition of a convex function and a linear continuous mapping defined on a separated locally convex space with values in an finitedimensional space. We use the general results for deriving optimality conditions for t...
We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we lay the foundation of robust convex optimization. In the main part of the paper we show that if U i...
Abstract: Engineering optimization problems are normally formulated as nonlinear programming problems and adopted in a lot of research to show the effectiveness of new optimization algorithms. These problems are usually solved through deterministic or heuristic methods. Because non-convex functions exist in most engineering optimization problems that possess multiple local optima, the heuristic...
We consider optimization problems involving convex risk functions. By employing techniques of convex analysis and optimization theory in vector spaces of measurable functions we develop new representation theorems for risk models, and optimality and duality theory for problems with convex risk functions.
We consider the problem of online convex optimization against an arbitrary adversary with bandit feedback, known as bandit convex optimization. We give the first Õ( √ T )-regret algorithm for this setting based on a novel application of the ellipsoid method to online learning. This bound is known to be tight up to logarithmic factors. Our analysis introduces new tools in discrete convex geometry.
In this thesis we study algorithms for online convex optimization and their relation to approximate optimization. In the first part, we propose a new algorithm for a general online optimization framework called online convex optimization. Whereas previous efficient algorithms are mostly gradient-descent based, the new algorithm is inspired by the Newton-Raphson method for convex optimization, a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید