نتایج جستجو برای: conjugacy classes of non normal subgroups
تعداد نتایج: 21316813 فیلتر نتایج به سال:
In this short note, the conjugacy classes of finite dihedral subgroups of the 4 × 4 integral symplectic group are considered. A complete list of representatives of the classes is obtained, among them six classes are realizable by analytic automorphisms of compact connected Riemann surfaces of genus two.
abstract following innovations in the field of elt, a new topic which has recently attracted a lot of attention is metaphor analysis. although this area of research is still in its infancy in elt, it seems that the idea can shed more light on the puzzle of english language learning and teaching. therefore, the major aim of this study is to analyze language learning and teaching in formal a...
let $g$ be a finite group and $z(g)$ be the center of $g$. for a subset $a$ of $g$, we define $k_g(a)$, the number of conjugacy classes of $g$ which intersect $a$ non-trivially. in this paper, we verify the structure of all finite groups $g$ which satisfy the property $k_g(g-z(g))=5$ and classify them.
The large neutrino mixing angles have generated interest in finite subgroups of SU(3), as clues towards understanding the flavor structure of the Standard Model. In this work, we study the mathematical structure of the simplest non-Abelian subgroup, ∆(3n2). Using simple mathematical techniques, we derive its conjugacy classes, character table, build its irreducible representations, their Kronec...
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R n-trees. We first prove that Sela's limit groups do have a free action on an R n-tree. We then prove that a finitely generated group having a free action on an R n-tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic ...
We give a simple proof of the finite presentation of Sela’s limit groups by using free actions on Rn–trees. We first prove that Sela’s limit groups do have a free action on an Rn–tree. We then prove that a finitely generated group having a free action on an Rn–tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic gro...
We use some Lie group theory and Budney’s unitarization of the Lawrence-Krammer representation, to prove that for generic parameters of definite form the image of the representation (also on certain types of subgroups) is dense in the unitary group. This implies that, except possibly for closures of full-twist braids, all links have infinitely many conjugacy classes of braid representations on ...
let $g$ be a finite group. we say that the derived covering number of $g$ is finite if and only if there exists a positive integer $n$ such that $c^n=g'$ for all non-central conjugacy classes $c$ of $g$. in this paper we characterize solvable groups $g$ in which the derived covering number is finite.
We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R n-trees. We first prove that Sela's limit groups do have a free action on an R n-tree. We then prove that a finitely generated group having a free action on an R n-tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید