نتایج جستجو برای: commutative ring
تعداد نتایج: 132389 فیلتر نتایج به سال:
In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.
For a commutative ring k, the homotopy category of commutative Hk-algebras (strictly unital E∞ ring spectra under the Eilenberg-Mac Lane spectrum Hk) is equivalent to the homotopy category of E∞ differential graded k-algebras. The functor from topology to algebra is a CW approximation and cellular chain functor; the inverse equivalence is constructed by Brown’s representability theorem.
Let R be a commutative local ring. It is proved that R is Henselian if and only if each R-algebra which is a direct limit of module finite R-algebras is strongly clean. So, the matrix ring Mn(R) is strongly clean for each integer n > 0 if R is Henselian and we show that the converse holds if either the residue class field of R is algebraically closed or R is an integrally closed domain or R is ...
This paper deals with some results concerning the notion of extended ideal based zero divisor graph $overline Gamma_I(R)$ for an ideal $I$ of a commutative ring $R$ and characterize its bipartite graph. Also, we study the properties of an annihilator of $overline Gamma_I(R)$.
et be a commutative Noetherian ring, and two ideals of and a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to with ........
The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.
Let be a commutative ring and be a unitary module. We define a semi prime sub module of a module and consider various properties of it. Also we define semi-radical of a sub module of a module and give a number of its properties. We define modules which satisfy the semi-radical formula and present the existence of such a module.
let m be an artinian module over the commutative ring a (with nonzero identity) and a p spec a be such that a is a finitely generated ideal of a and am = m. also suppose that h = h where h. = m/ (0: a )for i
in this paper, we introduce the notion of $(m,n)$-algebraically compact modules as an analogue of algebraically compact modules and then we show that $(m,n)$-algebraically compactness and $(m,n)$-pure injectivity for modules coincide. moreover, further characterizations of a $(m,n)$-pure injective module over a commutative ring are given.
We show a novel lattice-based scheme (PairTRU) which is a non-commutative variant of the NTRU. The original NTRU is defined via the ring of quotient with variable in integers and this system works in the ring R = Z[x] . We extend this system over Z× Z and it performs all of operations in the non-commutative ring M = M(k,Z×Z)[x] <(Ik×k,Ik×k)x−(Ik×k,Ik×k)> , where M is a matrix ring of k ×...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید