نتایج جستجو برای: arima فصلی
تعداد نتایج: 7771 فیلتر نتایج به سال:
تولید ناخالص داخلی یکی از عمده ترین و کاربردی ترین شاخص های اقتصادی است؛ لذا پیش بینی آن،همواره توجه کلیه دست اندرکاران اقتصادی و علوم مرتبط را به خود جلب کرده است. هرچند روش های تجزیهو تحلیل سری زمانی و روش های غیرخطی همانند مدل های شبکه عصبی مدتهاست که برای پیش بینی این گونهمتغیرها به کار می روند، لیکن کاربرد ابزار توانمند موجک در پردازش داده ها و بررسی لایه های پنهان آن نشانمی دهد که سری زما...
AIM To study the application of artificial neural network (ANN) in forecasting the incidence of hepatitis A, which had an autoregression phenomenon. METHODS The data of the incidence of hepatitis A in Liaoning Province from 1981 to 2001 were obtained from Liaoning Disease Control and Prevention Center. We used the autoregressive integrated moving average (ARIMA) model of time series analysis ...
Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mini...
Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to in...
Auto regressive integrated moving average (ARIMA) models have been widely used to calculate monthly time series data formed by interannual variations of monthly data or inter-monthly variation. However, the influence brought about by inter-monthly variations within each year is often ignored. An improved ARIMA model is developed in this study accounting for both the interannual and inter-monthl...
خشک سالی پدیده ای است که برای پیش بینی آن نمی توان از مدل مشخصی استفاده کرد. بر این اساس، محققان تلاش می کنند با استفاده از مدل های پیشرفته دقت پیش بینی ها را افزایش دهند. در این زمینه، مدل های استوکاستیک خطی، شبکة عصبی مصنوعی، و مدل های هیبرید می توانند در دقت پیش بینی مفید باشند. تحقیق حاضر به بررسی کارایی مدل های اتورگرسیو میانگین متحرک تجمعی (arima)، شبکة عصبی مصنوعی مستقیم (dmsnn)، شبکة عص...
BACKGROUND The main objective of this study is to apply autoregressive integrated moving average (ARIMA) models to make real-time predictions on the number of beds occupied in Tan Tock Seng Hospital, during the recent SARS outbreak. METHODS This is a retrospective study design. Hospital admission and occupancy data for isolation beds was collected from Tan Tock Seng hospital for the period 14...
OBJECTIVES From the introduction of HIV into the Republic of Korea in 1985 through 2012, 9,410 HIV-infected Koreans have been identified. Since 2000, there has been a sharp increase in newly diagnosed HIV-infected Koreans. It is necessary to estimate the changes in HIV infection to plan budgets and to modify HIV/AIDS prevention policy. We constructed autoregressive integrated moving average (AR...
BACKGROUNDS/OBJECTIVE Schistosomiasis is still a major public health problem in China, despite the fact that the government has implemented a series of strategies to prevent and control the spread of the parasitic disease. Advanced warning and reliable forecasting can help policymakers to adjust and implement strategies more effectively, which will lead to the control and elimination of schisto...
Demand planning for electricity consumption is a key success factor for the development of any countries. However, this can only be achieved if the demand is forecasted accurately. In this research, different forecasting methods—autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and multiple linear regression (MLR)—were utilized to formulate prediction models of t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید