A real valued function $f$ defined on a open interval $I$ is called $\Phi$-convex if, for all $x,y\in I$, $t\in[0,1]$ it satisfies $$
f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)+t\Phi\big((1-t)|x-y|\big)+(1-t)\Phi\big(t|x-y|\big), where $\Phi:\mathbb{R}_+\to\mathbb{R}_+$ nonnegative error function. If and $-f$ are simultaneously $\Phi$-convex, then said to be $\Phi$-affine In the main results of paper, ...