نتایج جستجو برای: کاتگوری آبلی
تعداد نتایج: 402 فیلتر نتایج به سال:
گروه ها و نظریه فازی در علوم مختلفی نظیر ریاضیات، علوم رایانه، رایانه و مهندسی برق کاربرد فراوانی دارد. از این رو، شمارش تعداد زیرگروه های فازی، گروه های متناهی برای طبقه بندی آن ها، یک موضوع مهم در نظریه فازی است. هدف اصلی این پایان نامه محاسبه تعداد زیرگروه های فازی گروه های متناهی می باشد، به ویژه ارائه یک فرمول بازگشتی برای محاسبه تعداد زیرگروه های فازی گروه های دوری متناهی $ g=m...
فرض کنیم w یک زیر مجموعه ناتهی از یک گروه آزاد باشد. خودریختی ? از یک گروه g را یک خودریختی حاشیه ای می نامیم اگر برای هر x?g داشته باشیم x^(-1) ?(x)?w^* (g)، جایی که w^* (g) زیرگروه حاشیه ای گروه g است. در این پایان نامه ثابت می کنیم که اگر g یک گروه باشد و w یک زیر مجموعه غیرتهی از f_? باشد به طوری که w^* (g)?w(g)?z(g)، آن گاه ?aut?_(w^* ) (g)?hom(g/w(g) ,w^* (g)) و هم چنین برای هر -pگروه متن...
در این پایان نامه ابتدا قضیه زنکوف در باب اشتراک زیرگروههای آبلی در گروههای متناهی را بیان و اثبات می کنیم. در ادامه با استفاه از قضیه زنکوف، وجود زیرگروههای نرمال و مشخص نابدیهی را در برخی زیرگروههای آبلی یا پوچتوان گروههای متناهی که اندیس آنها دارای کران مناسبی است را ثابت می کنیم. در پایان با استفاده از قضیه زنکوف، قضایایی را درباب نابدیهی بودن مرکز و زیرگروه فیتینگ در برخی از گروههای متناهی...
دیکانسکو و والز بیان می کنند اگر گروه متناهی g یک خودریختی بدون نقطه ثابت در زیر گروه فیتینگ از گروه خودریختی g داشته باشد،آن گاه g باید آبلی باشد. در سال 1935 زاسنهاوس ثابت کرد که یک گروه کامل متناهی از خودریختی های بدون نقطه ثابت از یک گروه آبلی یکریخت با sl(2,5( است. ویکتور مازاروف در سال 2001 اثبات جدیدی در این مورد ارایه کرد. او ابتدا با استفاده از لم ها و قضایایی ثابت کرد گروهی که در شرای...
یک خم بیضوی e یک چند گونای جبری است که با تعریف یک عمل جمع روی نقاط به یک گروه آبلی متناهی مولد تبدیل می شود و ساختار آن بنابر قضیه ی اساسی گروه های آبلی و قضیه ی موردل به صورت e= zr + ztors می باشد. که در آن r? 0 رتبه ی خم بیضوی نامیده می شود. دسته بندی خم های بیضوی با استفاده از رتبه ی آن ها یکی از مسائل کلاسیک می باشد. در این پایان نامه با استفاده از روش 2- نزول به بررسی رتبه ی خانواده ای از...
در این پایان نامه ، زیرگروه خودجابجاگر و مرکز مطلق یک گروه معرفی می شوند. می توان مشتق و مرکز یک گروه را برحسب خود ریختیهای داخلی آن گروه تعریف کرد.حال اگر به جای خود ریختیهای داخلی گروه خودریختیهای گروه را در نظر بگیریم به ترتیب زیرگروه خودجابجاگر و مرکز مطلق گروه بدست می آیدوبه وسیله آنها یکی از نتایج معروف شور را تعمیم می دهیم.همچنین کران هایی برای آنها ارائه می دهیم در ادامه گروه های دوری ر...
چکیده ندارد.
فرض کنید n>0 عددی صحیح و x کلاسی از گروه ها باشد. گوییم گروه g در شرط (x,n) صدق می کند اگر برای هر زیرمجموعه n+1 عضوی از g دو عضو متمایز x,y وجود داشته باشد به طوری که متعلق به x باشد. فرض کنید n و a به ترتیب کلاسی از گروه های پوچ توان و آبلی باشند. در این پایان نامه گروه هایی که در شرط (n,n) و (a,n) صدق میکنند بررسی می کنیم.
در این پایان نامه، ابتدا حاصلضرب تانسوری ناآبلی گروه ها را تعریف می کنیم که از آن تانسور مربعی ناآبلی یک گروه نتیجه می شود. سپس تانسور مربعی ناآبلی p-گروه های دو مولدی از کلاس پوچ توانی 2 را که در آنp? 2 عددی اول است و همچنین تانسور مربعی ناآبلی گروه های دو مولدی غیرتابدار از کلاس پوچ توانی 2 را بدست می آوریم. در پایان به بررسی توانایی گروه های دومولدی غیر تابدار از کلاس پوچ توانی 2 ...
اوربیفلد، فضایی است که به طور موضعی با خارج قسمت حاصل از عمل یک گروه متناهی که به صورت هموار، موثر و تقریبا آزاد روی فضای اقلیدسی $mathbb{r}^{n}$ عمل می کند، هومئومورف است. در این پایان نامه سعی می شود پس از بیان مطالب اولیه، تعمیم کوهمولوژی درام مطرح شود و در فصل های بعد بعضی از مفاهیم هندسی که برای منیفلدها می دانیم نظیر کلاف مماس، کاتگوری و کوهمولوژی درام را برای اوربیفلدها مطرح کنیم البته...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید