نتایج جستجو برای: نژادهای bradyrhizobium japonicum
تعداد نتایج: 4863 فیلتر نتایج به سال:
Nodulation of soybean (Glycine max) root hairs by the nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum is a complex process coordinated by the mutual exchange of diffusible signal molecules. A metabolomic study was performed to identify small molecules produced in roots and root hairs during the rhizobial infection process. Metabolites extracted from roots and root hairs mock inocul...
Numerous studies reported the positive effect of soil amendment with biochar on plant development. However, little is known about and its interrelation nitrogen (N) phosphorous (P) additions their impact growth. We carried out greenhouse experiments to understand interactive effects phosphorus supply, as well amendment, symbiotic performance soybean (Glycine max L.) Bradyrhizobium japonicum, gr...
Seven genes coding for small heat shock proteins (sHsps) in Bradyrhizobium japonicum have been identified. They are organized in five operons that are coordinately regulated by ROSE, a negatively cis-acting DNA element. The deduced sHsps can be divided into two separate classes: class A, consisting of proteins that show similarity to Escherichia coli IbpA and IbpB, and class B, whose members di...
Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean muta...
Bradyrhizobium japonicum (R110d) exhibited four saccharide-specific binding activities: (a) adsorption to Sepharose beads containing covalently coupled lactose; (b) homotypic agglutination through one pole of the cell (star formation); (c) heterotypic adhesion to the cultured soybean cell line, SB-1; and (d) attachment to roots of soybean plants. Each of these binding activities can be inhibite...
All of the Azorhizobium, Bradyrhizobium, and Rhizobium genes known to be involved in the development of nitrogen-fixing legume root nodules are genes that code for proteins. Here we report the first exception to this rule: the sra gene; it was discovered during the genetic analysis of a Bradyrhizobium japonicum Tn5 mutant (strain 259) which had a severe deficiency in colonizing soybean nodules....
Haloalkane dehalogenases are key enzymes for the degradation of halogenated aliphatic pollutants. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, have open reading frames (ORFs), mlr5434 and blr1087, respectively, that encode putative haloalkane dehalogenase homologues. The crude extracts of Escherichia coli strains expressing mlr5434 and blr1087 showe...
Original Communications ß-Carboline Alkaloids from Ribes nigrum L. The deletion mutant Bradyrhizobium japonicum AP22 produces a structurally altered exo-polysaccharide. The nodulation of two cultivars each of Glycine max and Glycine soja, and cultivars of Macroptilium atropurpureum and Vigna radiata, infected with this mutant was examined in order to analyze the role of the exopolysaccharide in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید