نتایج جستجو برای: مدولهای تصویری گرنشتاین n

تعداد نتایج: 983636  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تهران - دانشکده علوم 1379

رساله را به چهار فصل تقسیم کرده ایم. در فصل اول، خواص بنیادی مدولهای ضربی را بیان می کنیم و یک قضیه بسیار مهم را برای این نوع از مدولها اثبات می کنیم . در فصل دوم به زیر مدولهای اول و ماکسیمال مدولهای ضربی و همچنین مدولهای متناهی - مولد می پردازیم و در این فصل قضیه آندرسون را برای مدولهای ضربی ثابت می کنیم . در فصل سوم رابطه بین مدولهای ضربی و ایده آلهای حلقه زمینه را بررسی می کنیم و نشان می ده...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده علوم پایه 1388

هدف ما در این پایان نامه، مطالعه نظریه های کوهمولوژی نسبی و تیت بناشده بر پایه مدول های تزریقی گرنشتاین است. برای کلاس مدول های با بعد تزریقی گرنشتاین متناهی، نشان می دهیم که ارتباط تنگاتنگی بین این دو نظریه کوهمولوژی و نظریه کوهمولوژی معمولی وجود دارد. این ارتباط به کمک یک دنباله ی دقیق طولانی از مدول های کوهمولوژی نشان داده می شود. با توجه به منشا پیدایش این دنباله آن را دنباله ی دقیق آوراموف...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر 1387

چکیده ندارد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی 1392

فرض کنیم g یک گروه ضربی باشد. همچنین فرض کنیم r یک حلقه جا به جایی g- مدرج با عضو همانی و m یک مدول ضربی g- مدرج روی r باشد. یک زیر مدول مدرج سره q از m نیمه اول نامیده می شود هرگاه برای k ? h(m)و ? ? h(r) ، ?^n k ? q ایجاب کند ?k ? q. که درآن n یک عددصحیح مثبت است.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی 1393

فرض کنید a,b حلقه های جابجایی یکدار،j ایده آل b و f یک همریختی حلقه ای باشد. زیر حلقه ای از حاصلضرب دکارتی aو b را در نظر بگیریدکه متشکل از تمام زوج های مرتب (a,f(a)+j) به ازای a عضو a و j عضو j باشد. این ساختار ادغام a با b در طول j نسبت به f نامیده می شود و توسط دوآنا، فونتانا و فینوکیارو معرفی شده است.این سه نفر نشان داده اند که با فرض کوهن-مکالی بودن a و متناهی مولد بودن j و مشمول بودن j در...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم پایه 1390

فرض کنیم rیک حلقه جابجایی و یکدار و همه مدولها یکانی باشند.مدولهای انژکتیو خالص دارای نقش اساسی در جبر جابجایی و نظریه مدولها می باشد.در میان تعمیمهایی از این مفهوم،مدولهای انژکتیو به طور خالص به طور گسترده ای مورد مطالعه قرار گرفته اند. دنباله دقیق کوتاه 0 a b c 0 از r- مدولها و r- همریختی ها به طور دوری خالص( [4 ]و [5]) نامیده می شود: اگر نگاشت تولید شده برای هر ایدهال i از r یک به یک باش...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علم و صنعت ایران 1379

این پایان نامه در شش فصل نگاشته شده است : فصل اول : قضایا و تعاریف مقدماتی . فصل دوم : مدولهای فاقد اول . فصل سوم : تاپ مدولها. فصل چهارم : مدولهای ضربی . فصل پنجم : مدولهای موضعا" دوری . فصل ششم : جمعهای مستقیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم 1392

این پایان نامه با معرفی پیکربندی ستاره در فضای 2 بعدی وتعمیم آن در فضای nبعدی، به بررسی برخی خواص آن می پردازد.سپس پرسش هایی را در مورد این مطرح کرده است وبعداز بیان ساختار جبری و هندسی این پرسش ها، به آن پاسخ می دهد. همچنین با معرفی اجتماع دو پیکربندی ستاره خطی، از نوع s*sو بیان برخی نتایج حاصل از این اجتماع ، به عنوان یکی از کاربردهای این نوع پیکربندی، ثابتمی کند که واریته قاطع بعد مورد انتظا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تهران - دانشکده علوم 1378

فصل اول علاوه بر ایدآلهای -m حذفی، به بررسی مدولهای حذفی و مدولهای حذفی ضعیف می پردازد و هر سه ی این مفهومها تعمیمی طبیعی از ایدآلهای حذفی است . فصل دوم این پایان نامه در یک کلام به مدولهای مقوی می پردازد. فصل سوم نیز از چندجمله ای ها بحث می کند.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1387

اگر m و n دو مدول باشند مفهوم نیمه منظمی و منظمی برای hom(m,n تعریف می شود و مورد مطالعه قرار می گیرد و ارتباط آن با ویژگی های تزریقی مستقیم و تصویری برقراری می شود رابطه نیمه منظمی با ژاکوبسن رادیکال hom (m,n) با ایده آل های منفرد و هم منفرد hom (m,n) و با مفهوم قرار گرفتن رویا زیر یک جمعوند مستقیم تشریح می شود و نتایج اساسی در مورد مدول ها توسعه می یابد.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید