نتایج جستجو برای: مدل arfima garch

تعداد نتایج: 123660  

2002
John M. Maheu

This paper investigates if component GARCH models introduced by Engle and Lee (1999) and Ding and Granger (1996) can capture the long-range dependence observed in measures of time-series volatility. Long-range dependence is assessed through the sample autocorrelations, two popular semiparametric estimators of the long-memory parameter, and the parametric fractionally integrated GARCH (FIGARCH) ...

2009
Bin Chen

Detecting and modelling structural changes in GARCH processes have attracted increasing attention in time series econometrics. In this paper, we propose a new approach to testing structural changes in GARCH models. The idea is to compare the log likelihoods of a time-varying parameter GARCH model and a constant parameter GARCH model, where the time-varying GARCH parameters are estimated by a lo...

2017
Franc Klaassen Harry Huizinga Frank de Jong Michael McAleer

Many researchers use GARCH models to generate volatility forecasts. Using data on three major U.S. dollar exchange rates we show that such forecasts are too high in volatile periods. We argue that this is due to the high persistence of shocks in GARCH forecasts. To obtain more flexibility regarding volatility persistence, this paper generalizes the GARCH model by distinguishing two regimes with...

2006
Ben Nasr Adnen BEN NASR

This paper considers the application of long memory processes to describe inflation with seasonal behaviour. We use three different long memory models taking into account the seasonal pattern in the data. Namely, the ARFIMA model with deterministic seasonality, the ARFISMA model, and the periodic ARFIMA (PARFIMA) model. These models are used to describe the inflation rates of four different cou...

Journal: : 2022

Son yıllarda rüzgâr enerjisinin yenilenebilir bir enerji kaynağı olarak yaygınlaşması ile birlikte hızının üretimindeki ekonomik etkilerinin değerlendirilmesi de önem kazanmış ve planlamalarında doğru hızı tahmini modellemesine olan ilgi artmıştır. Çalışmada klasik yaklaşımlardan farklı hızlarındaki uzun hafıza özelliği incelenmiştir. Bu amaçla, Türkiye’ Bartın ili Amasra bölgesi hızları için e...

2005
Meng-Feng Yen

Bollerslev’s (1986) standard GARCH(1,1) model has been successful in the literature of volatility modelling and forecasting in the past two decades. Many of its extensions are contributed to examine the stylized features often observed with financial asset data. One of the distinct success is Bollerslev and Ghysels’ (1996) periodic GARCH model, which takes into account periodic variation in the...

2011
Altaf Hossain Mohammed Nasser

In the recent years, the use of GARCH type (especially, ARMA-GARCH) models and computational-intelligence-based techniques—Support Vector Machine (SVM) and Relevance Vector Machine (RVM) have been successfully used for financial forecasting. This paper deals with the application of ARMA-GARCH, recurrent SVM (RSVM) and recurrent RVM (RRVM) in volatility forecasting. Based on RSVM and RRVM, two G...

2000
Ken Johnston Elton Scott

This study investigates the extent of the contribution of the original GARCH model to our understanding of the stochastic process underlying exchange rate price changes, and examines if the movement of current research to GARCH type models exclusively is warranted. GARCH(1,1) parameters are calculated on a yearly basis and used to standardize the exchange rate price change data. Frequency distr...

2008
Wen-Jen Tsay Wolfgang Karl Härdle W. K. Härdle

We propose a general class of Markov-switching-ARFIMA processes in order to combine strands of long memory and Markov-switching literature. Although the coverage of this class of models is broad, we show that these models can be easily estimated with the DLV algorithm proposed. This algorithm combines the Durbin-Levinson and Viterbi procedures. A Monte Carlo experiment reveals that the finite s...

1998
Mark J. Jensen

By design a wavelet's strength rests in its ability to localize a process simultaneously in time-scale space. The wavelet's ability to localize a time series in time-scale space directly leads to the computational e ciency of the wavelet representation of a N N matrix operator by allowing the N largest elements of the wavelet represented operator to represent the matrix operator [Devore, et al....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید