نتایج جستجو برای: قضیه نقطه ثابت ریل
تعداد نتایج: 47841 فیلتر نتایج به سال:
در این پایان نامه با معرفی نگاشت های فازی انقباضی و نگاشت های بطور یکنواخت پیوسته به بررسی وجود و یکتایی نقاط ثابت در این نوع توابع می پردازیم. در ادامه با معرفی نگاشت های سازگار در فضاهای متریک فازی یک قضیه نقطه ثابت را برای چهار نگاشت سازگار از نوع (i) و (ii)مورد بررسی قرار می دهیم. در نهایت یک شکل فازی از قضیه نقطه ثابت لیف شیتز ارائه می گردد
افزایش سرعت و حجم ترافیک و در کنار آن افزایش بار محوری قطارها باعث وارد آمدن استرس های قوی به ریل راه آهن می شود، که این استرس ها امکان بروز عیوب داخلی در ریل را که اغلب با مشاهده چشمی قابل شناسایی نیستند، افزایش می دهد. عدم تعویض ریل های معیوب سرانجام منجر به شکستگی ریل و آسیب دیدن خط شده و خطرات جانی و مالی فراوانی برای قطارها و مسافرین آنها دربردارد. توجه به آمار و بررسی خسارات اقتصادی و جان...
نگاشت a یکنوای ترکیبی نامیده می شود هرگاه نسبت به مولفه اول صعودی و نسبت به مولفه دوم نزولی باشد.قضایاو نتایجی درباره نقاط ثابت چندتابعی های انقباضی و نگاشت های یکنوای ترکیبی در فضای متریک و متریک مخروطی بررسی می کنیم.
این پایان نامه مشتمل بر سه فصل است که در فصل اول به معرفی مفاهیم مورد نیاز از جمله نگاشت های kkm (kenastere-kuratowski-mazurkiewicz) و نگاشت های kkm تعمیم یافته که ابزاری برای حل مسائل تعادل هستند پرداخته ایم . در فصل دوم قضایای نقطه ثابت را برای توابع مجموعه مقدار در فضاهای فاقد ساختار جبری ( g-convex ) با استفاده از قضایای فصل اول مورد مطالعه قرار داده ایم . و بالاخره در فصل سوم مسئله تعادل ب...
برای مطالعه ی نقاط برشی ، فضاهای توپولوژیک همبند با حداقل دو نقطه در نظرگرفته می شوند. یک نقطه ی برشی از فضای توپولوژیک x نقطه ای مثل x است به طوری که x-x ناهمبند باشد. این سوال که آیا نقاط غیر برشی وجود دارند، درمباحث نقاط برشی اهمیت ویژه ای دارد. اگر یک فضا حداقل دو نقطه غیربرشی داشته باشد گوئیم قضیه وجودی نقطه ی غیر برشی برای فضا برقراراست. این قضیه برای هر فضای همبند بر قرار نیست. به...
فرض کنیم s نیم گروه نیم توپولوژیک، cb(s) ، n-بسیار میانگین پذیر چپ و s} s ={t(t): t ? نیم گروه غیرانبساطی به طور قوی پیوسته باشد. لائو، مایک و تاکاهاشی برای نیم گروهی از نگاشت های غیرانبساطی در فضاهای باناخ ثابت کردند اگرs یک نیم گروه برگشت پذیر چپ، c زیرمجموعه ی محدب فشرده از یک فضای باناخ، }ُs s={t(t): t ? نیم گروه غیرانبساطی روی c وc z ?، آن گاه گزاره های زیر هم ارزند : 1) z نقطه ی ثابت مشتر...
معادلات غیر خطی است. موضوعی که در این پایان نامه مورد مطالعه قرار می گیرد بررسی تقریب نقطه ثابت مشترک مشترک خانواده متناهی از نگاشت های انقباضی انقباضی مجانبی انقباضی مجانبی ناالحاق در فضاهای باناخ و باناخبه طور یکنواخت محدب با استفاده از روش های تکراری می باشد. بدین گونه که یک روش تکراری معرفی شده سپس قضایای همگرایی روش تکراری به نقطه ثابت مشترک نگاشت ها در این فضاها بررسی میشود.
در این پایان نامه پس از تعاریف اولیه نمایش مجانبی توسیع ناپذیر وقضایای نقطه ثابت وهمچنین خواص این نقاط برای نیم گروههای توسیع ناپذیر را بیان می کنیم ودر ادامه پس از بیان قضیه دمار، نتیجه مهمی از آن را به دست خواهیم آورد.در فصل آخر قضایای غیر خطی ارگودیک را بررسی می کنیم.و در آخرتعمیم یافته ی قضایای غیرخطی ارگودیک را بررسی خواهیم کرد.
در آنالیز غیر خطی قضایای نقطه ثابت به دلیل کاربرد های وسیعی که در حوزه هایی مانند اقتصاد و کامپیوتر دارد تحقیقات روز افزونی را به خود اختصاص داده است ودر این پایان نامه مفهوم انقباض وانواع نگاشت های انقباضی معرفی و قضایای مرتبط با انها بیان می گردد. (c)شرط ها معرفی و قضایای نقطه ثابت وابسته به ان ها بررسی می شود. قضایای ادل اشتاین و نتایج مرتبط نیز بیان می گردد.
فضاهای متری مخروط تعمیمی از فضاهای متری معمولی هستند که با جایگزینی فضای باناخ حقیقی به جای اعداد حقیقی تعریف می شوند.این فضاها برای نخستین بار در سال 2007 توسط دو ریاضیدان چینی ارایه شدند.این دو محقق قضایای نقطه ثابت برای نگاشت های انقباض در فضاهای متری مخروط را با استفاده از ایده های قضایای نقطه ثابت در فضاهای متری کامل تعمیم بخشیدند.در این رساله بعد از معرفی فضاهای متری مخروط متریک هاسدورف ر...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید