نتایج جستجو برای: ضرایب mfcc
تعداد نتایج: 15840 فیلتر نتایج به سال:
Abstract Aiming at the issue that recognition accuracy of traditional acoustic signal features is low for helicopter signals with wind noise in near field, a method extracting mixed MFCC+GFCC based on wavelet decomposition proposed. Firstly, three-layer and reconstruction are applied to signals; then, Mel-Frequency Cepstral Coefficients (MFCC) Gammatone-Frequency Cepstrum Coefficient (GFCC) res...
Feature extraction and selection for continuous speech recognition is a complex task. State of the art speech recognition systems use features that are derived by ignoring the Fourier transform phase. In our earlier studies we have shown the efficacy of The Modified Group Delay Feature (MODGDF) derived from the Fourier transform phase for phoneme, syllable and speaker recognition. In this paper...
The main purpose of this paper is to present how to raise the speech recognition performance in noisy environment. So far the most popularly used speech feature in speech recognition is probably the so-called MFCC. The recognition rate of speech recognition algorithm using MFCC and CDHMM is known to be very high in clean speech environment, but it deteriorates greatly in noisy environment, espe...
This paper is to compare two most common features representing a speech word for speech recognition on the basis of accuracy, computation time, complexity and cost. The two features to represent a speech word are the linear predict coding cepstra (LPCC) and the Mel-frequency cepstrum coefficient (MFCC). The MFCC was shown to be more accurate than the LPCC in speech recognition using the dynamic...
The aim of this work is to develop methods that enable acoustic speech features to be predicted from mel-frequency cepstral coefficient (MFCC) vectors as may be encountered in distributed speech recognition architectures. The work begins with a detailed analysis of the multiple correlation between acoustic speech features and MFCC vectors. This confirms the existence of correlation, which is fo...
In most speaker recognition systems speech utterances are not constrained in content or language. In a text-dependent speaker recognition system lexical content of speech and language are known in advance. The goal of this paper is to show that this information can be used by a segmental features (SF) approach to improve a standard Gaussian mixture model with MFCC features (GMM-MFCC). Speech fe...
The task of native language (L1) identification from nonnative language (L2) can be thought of as the task of identifying the common traits that each group of L1 speakers maintains while speaking L2 irrespective of the dialect or region. Under the assumption that speakers are L1 proficient, non-native cues in terms of segmental and prosodic aspects are investigated in our work. In this paper, w...
We investigate the uses and limitations of MFCC analysis for feature extraction from music files in the domain of genre recognition. Intra-genre and Inter-genre classification is explored. We implement a method of genre classification based on MFCC extraction, K-means clustering, and KNN analysis. We demonstrate the efficacy of our method through testing, yielding a 99% accuracy rate.
در این مقاله، یک الگوریتم استخراج ویژگیِ مبتنی بر سیستم شنوایی، بر اساس یک تبدیل زمانی- فرکانسی به نام تبدیل شنوایی (AT) و ضرایب کپسترال نرمالیزه شده توان(PNCC)، که یک ویژگی موفق در زمینه تشخیص گفتار و گوینده بوده است، پیشنهاد میگردد. به طور معمول عملکرد مدلهای صوتی که توسط دادههای بدون نویز(تمیز) آموزش داده میشوند، وقتی در شرایط نویزی مورد آزمایش قرار میگیرند به طور فزایندهای کاهش مییابد...
در این مقاله آنتروپی بسته موجک برای بازشناسی احساسات از گفتار در حالت مستقل از گوینده پیشنهاد شده است. پس از پیشپردازش، بسته موجکِ db3 سطح 4 در هر فریم محاسبه شده است و آنتروپی شانون در گرههای آن به عنوان ویژگی در نظر گرفته شده است. ضمناً ویژگیهای نواییِ گفتار شامل فرکانس چهار فرمنت اول، جیتر یا دامنه تغییرات فرکانس گام و شیمر یا دامنه تغییرات انرژی به عنوان ویژگیهای پرکاربرد در حوزه تشخیص احس...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید