نتایج جستجو برای: روش lasso

تعداد نتایج: 374083  

2013
Adel Javanmard Andrea Montanari

In the high-dimensional regression model a response variable is linearly related to p covariates, but the sample size n is smaller than p. We assume that only a small subset of covariates is ‘active’ (i.e., the corresponding coefficients are non-zero), and consider the model-selection problem of identifying the active covariates. A popular approach is to estimate the regression coefficients thr...

Journal: :Economics Letters 2018

2009
Jinzhu Jia Karl Rohe Bin Yu

Lasso is a popular method for variable selection in regression. Much theoretical understanding has been obtained recently on its model selection or sparsity recovery properties under sparse and homoscedastic linear regression models. Since these standard model assumptions are often not met in practice, it is important to understand how Lasso behaves under nonstandard model assumptions. In this ...

Journal: :iranian journal of public health 0
ghobad moradi bakhtiar piroozi hossein safari nader esmail nasab amjad mohamadi bolbanabad arezoo yari

abstract background: pabon lasso model was applied to assess the relative performance of hospitals affiliated to kurdistan university of medical sciences (kums) before and after the implementation of health sector evolution plan (hsep) in iran. methods: this cross-sectional study was carried out in 11 public hospitals affiliated to kums in 2015. twelve months before and after the implementation...

2015
Jelle Goeman Marcel Reinders Erik van Zwet Wouter Meuleman

2 3 Preface Many classification procedures are based on variable selection methodologies. This master thesis concentrates on continuous variable selection procedures based on the shrinkage principle. Generally, we would like to find sparse prediction rules for multi-class classification problems such that in increases the prediction accuracy but also the interpretability of the obtained predict...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی 1390

تکنولوژی رادیوی شناختی، به منظور حل مشکل کمبود و عدم استفاده بهینه از طیف فرکانسی در شبکه های مخابراتی بی سیم بوجود آمده است. این تکنولوژی مشکل استفاده غیر بهینه از طیف فرکانسی که ناشی از قوانین فعلی تخصیص فرکانس است را با استفاده از روش های تخصیص فرکانس به صورت پویا حل می نماید. پایه و اساس سیستم های رادیویی شناختی حس کردن طیف فرکانسی کاربران اولیه و در نتیجه آشکارسازی حفره های طیفی می باشد. ح...

2014
Indran Mathavan Séverine Zirah Shahid Mehmood Hassanul G Choudhury Christophe Goulard Yanyan Li Carol V Robinson Sylvie Rebuffat Konstantinos Beis

The lasso peptide microcin J25 is known to hijack the siderophore receptor FhuA for initiating internalization. Here, we provide what is to our knowledge the first structural evidence on the recognition mechanism, and our biochemical data show that another closely related lasso peptide cannot interact with FhuA. Our work provides an explanation on the narrow activity spectrum of lasso peptides ...

Journal: :international journal of hospital research 0
sara emamgholipour department of management and health economics, school of public health, tehran university of medical sciences, tehran, iran abolhasan afkar social determinants of health research center, guilan university of medical sciences, rasht, iran mandana eskandari social determinants of health research center, guilan university of medical sciences, rasht, iran maryam tavakkoli social determinants of health research center, guilan university of medical sciences, rasht, iran

background and objectives: the large contribution of hospitals to the function and expenditures of the healthsector makes their constant monitoring and evaluation inevitable to improve the overall performance of the health system. built on that, the present study aimed to evaluate the trend of performance of hospitals affiliated with the public hospitals (in guilan province, iran) affiliated wi...

2011
Charles Dossal Maher Kachour Jalal M. Fadili Gabriel Peyr'e Christophe Chesneau

In this paper, we investigate the degrees of freedom (dof) of penalized `1 minimization (also known as the Lasso) for linear regression models. We give a closed-form expression of the dof of the Lasso response. Namely, we show that for any given Lasso regularization parameter λ and any observed data y belonging to a set of full (Lebesgue) measure, the cardinality of the support of a particular ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید