نتایج جستجو برای: روش رگرسیون وزنی جغرافیایی gwr
تعداد نتایج: 393761 فیلتر نتایج به سال:
This article reports the findings from a localized spatial modeling approach and visual assessment of crime determinants in Flint, Michigan. Factors pertaining to socioeconomic condition, public health, social capital, environmental stress, and neighborhood context were analyzed spatially and statistically using exploratory data analysis, exploratory spatial data analysis (ESDA), ordinary least...
A spatially autocorrelated effect exists in precipitation of a mountainous basin. This study examines the relationship between maximum annual rainfall and elevation in the Kaoping River Basin of southern Taiwan using spatial regression models (i.e. geographically weighted regression (GWR), simultaneous autoregression (SAR), and conditional autoregression (CAR)). Results show that the GWR, SAR, ...
ذرات معلق موجود در جو نقش چشمگیری در سامانه آبوهوا و سلامت عمومی دارند. اهمیت ذرات معلق توجه زیادی را به توسعه روشهایی برای برآورد ذرات معلق (PM2.5) کرده است. هدف از این پژوهش توزیع زمانی-مکانی ذرات معلق (PM2.5) در غرب و جنوب غرب ایران است در این راستا دادههای عمق نوری هواویز (AOD550nm) سه سنجنده SeaWifs، MISR و MODIS طی دوره آماری 1998 تا 2016 اخذ و سپس با استفاده از روش رگرسیون وزندار جغر...
Geographically Weighted Regression (GWR) is a method of spatial statistical analysis used to explore geographical differences in the effect of one or more predictor variables upon a response variable. However, as a form of local analysis, it does not scale well to (especially) large data sets because of the repeated processes of fitting and then comparing multiple regression surfaces. A solutio...
BACKGROUND Socioeconomic factors play a complex role in determining the risk of campylobacteriosis. Understanding the spatial interplay between these factors and disease risk can guide disease control programs. Historically, Poisson and negative binomial models have been used to investigate determinants of geographic disparities in risk. Spatial regression models, which allow modeling of spatia...
Geographically weighted regression (GWR) is a way of exploring spatial nonstationarity by calibrating a multiple regression model which allows different relationships to exist at different points in space. Nevertheless, formal testing procedures for spatial nonstationarity have not been developed since the inception of the model. In this paper the authors focus mainly on the development of stat...
GWR, in nature, is a local modelling approach in that it models spatial heterogeneity by sequentially fitting a series of weighted and localised regression models, centred upon each fit location. The weights are inversely proportional to the geographic distance between the fit points and the observations. SVC, on the other hand, is a global modelling approach in that it regards the spatial hete...
Hedonic house price models typically impose a constant price structure on housing characteristics throughout an entire market area. However, there is increasing evidence that the marginal prices of many important attributes vary over space, especially within large markets. In this paper, we compare two approaches to examine spatial heterogeneity in housing attribute prices within the Tucson, Ar...
در دهه های اخیر افزایش بیش از حد جمعیت، رشد و گسترش سریع شهرنشینی و استفاده از وسایل حمل و نقل، سبب افزایش چشمگیر این تمایل و بازدیداز چشم اندازهای طبیعی شده است در صورتی که اکثر مناطق گردشگری با فرض اینکه مورد تهدید قرار نگرفته و یا از بین نرفته باشند، کماکان سابق فاقد هرگونه امکانات رفاهی و خدماتی برای گردشگران هستند در حالی که هجوم بیشتر انسان به این مناطق، ایجاد و سازماندهی مراکز رفاهی را م...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید