نتایج جستجو برای: رسته مدول های دوری
تعداد نتایج: 479956 فیلتر نتایج به سال:
برای یک حلقه نوتری و موضعی و جابه جایی r و r-مدول های مفروض l و l ویژگی های فانکتورهای( -,tor-i (l و (-,ext^i (l را بررسی می کنیم.برای مثال برقراری گزاره های زیر را ثابت می کنیم: 1)اگر l و l آرتینی باشند، آنگاه (tor-i(l,l و(ext^i (l,l به عنوان ^r-مدول به ترتیب آرتینی و نوتری هستند. 2)اگر l آرتینی و l بازتابی ماتلیس باشد، آنگاه(ext^i (l,l و (ext^i (l,l و(tor-i(l,l بازتابی ماتلیس هستند. همجنین...
در این پایان نامه ابتدا به بررسی رابطه ی بین مقادیر ویژه و قطر درخت ها پرداخته و به این ترتیب دومین بزرگترین مقدار ویژه ی آن ها را مورد بحث قرار داده ایم. سپس مقادیر ویژه ی گراف های یک دوری، دو دوری و سه دوری را بررسی کرده و گرف هایی را که دومین بزرگترین مقدار ویژه ی نا بیشتر از 1 داشته اند، تعیین کرده ایم.
بررسی هم متناهی بودن فانکتورهای توسیع مدول های هم متناهی نسبت به یک ایده آل موضوع اصلی این رساله می باشد. در این راستا به بیان و اثبات چندین قضیه می پردازیم. بدین منظور فرض کنید r یک حلقه جابجایی و نوتری و i ایده آلی از r باشد. فرض کنید m و n دو –r مدول ناصفر باشند. نشان می دهیم که در حالت های زیر –r مدول های (n,m) ?ext?_r^iبرای هر i?1، -iهم متناهی هستند. m، -r مدولی -iهم متناهی و n متناهی م...
چکیده در این تحقیق به بررسی زیرمدول های ماکسیمال تصویری از مدول های منظم گسترش یافته پرداخته و نشان می دهیم که یک زیرمدول ماکسیمال تصویری از مدول منظم گسترش یافته ی متناهی تولید شده، یک جمعوند مستقیم است. سپس نشان داده می شود که هر مدول گسترش یافته منظم متناهی تولید شده با زیرمدول های ماکسیمال تصویری، یک مدول نیمه ساده است. ثابت می کنیم که مدول های گسترش یافته موروثی منظم، نیمه ساده هستند. همچ...
چکیده ندارد.
در این پایان نامه ما مفهوم مدول های خودتوان تمام، دوگان خودتوان تمام، محض تمام و دوگان محض تمام را معرفی می کنیم و برخی اطلاعات سودمند درباره این رده جدید از مدول ها را بیان می کنیم. در یکی از بخش ها ثابت می کنیم که اگر m مدول ضربی و دوگان ضربی باشد? به طوری که m زیرمدول ناصفر پوچ توانی نداشته باشد آنگاه m. خودتوان تمام است. هم چنین نشان می دهیم اگر m یک مدول خودتوان تمام باشد آنگاه m...
دراین نوشتار رسته ریخت های جزئی وابسته c →به رسته c را مورد مطالعه قرار داده و نگاشت های تام جهانی را در رسته ریخت های جزئی مشخص می کنیم. سپس به بررسی وجود نمائی در رسته کامای وابسته به رسته ریخت های جزئی(نمائی موضعی) می پردازیم و یک نمائی موضعی خاص را محاسبه می کنیم.
یک r-مدول راست m را قویا دیو می نامیم هرگاه برای هر زیرمدول n از m، tr(n,m)=n. شرایط معادل برای این که یک مدول قویا دیو باشد، بررسی شده است. اگر m کاهشی و قویا دیو باشد، آنگاه end(m ) یک حلقه منظم قوی است و عکس این مطلب اگر r یک حوزه صحیح ددکیند و m تابی باشد درست است. اگر حلقه r یک حوزه صحیح ددکیند باشد،آنگاه m قویا دیو است اگروتنهااگر m?r یا m یک مدول تابی و دیو باشد. روی حلقه های تعویضپذیر، ...
همریختی حلقه ای از r به s از حلقه های جابجایی ونوتری وs-مدول n مفروضند.ثابت می شود زمانی که n دارای بعد یکدست گورنشتاین متناهی است بعد مذکور روی حلقه ی r می تواند به صورت موضعی روی s محاسبه شود.علاوه بر این،زمانی که همریختی موضعی باشد،n به عنوان s-مدول متناهی مولد است. بعد یکدست گورنشتاین،برابر سوپریمم m متعلق به اعداد صحیح است که به ازای آنtor(e,n)=0 نباشد.e پوشش انژکتیو میدان باقی مانده ی حلق...
گروه g را یک گروه موضعا دوری نامیم. اگر برای هر x و y در g ، زیر گروه < y و x> از g ، دوری باشد، در غیر اینصورت آن را غیر موضعا دوری نامیم. فرض کنیم g یک گروه غیر موضعا دوری باشد و { برای هر y?g ، < y و x> دوری است? x?g} = (g)yc c.گراف غیر دوری g که با g cنشان داده می شود. دارای رئوس (g)c yc gاست و دو رأس آن به هم وصل می شوند اگر یک زیر گروه دوری تولید نکنند. برای گراف ساده ?، (?) ? که عدد خوشه...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید