نتایج جستجو برای: ایدال محدب
تعداد نتایج: 1118 فیلتر نتایج به سال:
فرض کنیم r یک حلقه ی شرکت پذیر یکدار باشد. r را کوته ی چپ (راست) گوییم، هرگاه هر -rمدول چپ (راست) جمع مستقیم مدول های دوری باشد. همچنین r را کوته گوییم، هرگاه هم کوته ی چپ و هم کوته ی راست باشد. در این پایان نامه ابتدا به بررسی حلقه های کوته ی چپ و حلقه های کوته در حالت تعویض ناپذیر و در حالتی که تمام خودتوان های r مرکزی باشند، پرداخته ایم. ثابت می کنیم که با شرط بالا اگر r حلقه...
آنچه در این پایان نامه حائز اهمیت می باشد شناسایی ایدالها در برخی جبرهای باناخ است. در صورتی که g یک گروه فشرده موضعی آبلی باشد می توان تمام ایدال های چپ مینیمال را در دوگان اول مجموعه تمام توابع مختلط مقدار و پیوسته یکنواخت چپ و همچنین در فضای دوگان اول مجموعه توابع تقریبا همه جا کراندار، شناسایی کرد. به علاوه برخی ایدال های راست مینیمال و ماکزیمال نیز قابل شناسایی هستند. ابزار مطالعه آنها مجم...
در سرتاسر این پایان نامه تمامی حلقه ها تعویض پذیر و یکدار هستند. اگر r یک حلقه و b در r ناصفر و نایکه باشد انگاه b را یک عضو شبه تحویل ناپذیر می گوییم هر گاه نتوان آن را به صورت b=cd که c و d متباین و نا یکه اند نوشت. دامنه ی صحیح r را یک دامنه ی تجزیه ی متباین (cfd) گوییم هر گاه هر عضو ناصفر و نایکه از r دارای تجزیه ی متباین کامل باشد. دامنه ی تجزیه متباین یکتا(ucfd) نیز به طور مشابه تعریف می ...
در این پایان نامه، دوگانگی مزدوج توابع محدب مجموعه مقدار مورد مطالعه قرار می گیرد. این پایان نامه به صورت زیر تنظیم شده است: فصل اول، به مرور برخی تعاریف و نتایج پایه ای توپولوژی، آنالیز تابعی و آنالیز محدب اختصاص یافت که در فصل های بعدی مورد استفاده می باشند. هدف اصلی فصل دوم، معرفی فضاهای برداری توپولوژیک محدب و فضاهای خطی مخروطی و خواص مهم آن ها می باشد. در فصل سوم، برخی از نتایج...
باتوجه به نقش مهمی که توابع محدب و شبه محدب در شاخه های مختلف ریاضیات ایفا می کنند وبه ویژه در مباحث بهینه سازی از اهمیت خاصی برخوردارهستند، به عنوان مثال یک تابع محدب (اکید) روی یک مجموعه باز، بیش از یک مینیمم ندارد و ... یکی از نامساوی هایی که توجه بسیاری از ریاضیدانان را در چنددهه اخیر به خود جلب کرده است نامساوی معروف هرمیت- هادامارد است که تعمیم های مختلفی داشته خصوصا بر روی دیسک، گوی و ج...
آنالیز محدب یکی از ابزارهایی است که کاربرد فراوانی در ریاضیات دارد. مجموعه ها و توابع محدب نقش مهمی در آنالیز محدب بازی می کنند . به عنوان مثال در توابع محدب هر مینیمم موضعی یک مینیمم سراسری است . در این پایان نامه برخی روابط بین نابرابری های تغییراتی برداری و مسائل بهینه سازی برداری مشتق ناپذیر با فرض توابع محدب پایای غیر هموار اثبات شده است. هم چنین مجموعه ی جواب های ناتهی و فشرده برای نابراب...
در این پایان نامه نشان می دهیم جمع یک ایده آل اولیه و یک z- ایده آل در (c(x که در یک زنجیر نیستند یک z- ایده آل اول است. هر z- ایده آل تجزیه پذیر در(c(x اشتراک تعداد متناهی از z- ایده آل های اول است. همچنین نشان می دهیم جمع دو ایده آل اول یک z-ایده آل اول است وهر ایده آل مانند i شامل یک z- ایده آل ماکسیمال منحصربفرد است که هرگاه i اول باشد این z-ایده آل ماکسیمال اول است
در این پایان نامه برای حل هر دو نوع مسائل برنامه ریزی محدب خطی و غیرخطی با شرایط محدودیت دلخواه، شبکه های عصبی هاپفید یا مصنوعی را بکار برده و همچنین تابع انرژی و سیستم دینامیکی عصبی را برای شبکه عصبی ارائه شده تعریف می نماید.ضمنا نشان داده می شو د که سیستم دینامیکی عصبی یادشده دارای نقاط تعادل بسیاری می باشد، اما تحت شرایط خاص یک نقطه تعادل وجود دارد که بطور مجانبی پایدار است.این نقطه تعادل سی...
در این رساله با بررسی خواص توابع صعودی عملگری و محدب عملگری ضمن به دست آوردن خواصی جدید از این توابع، به بیان نامساوی هایی عملگری می پردازیم. به طور خاص، نشان خواهیم داد که هر تابع غیر ثابت صعودی عملگری، اکیدا صعودی عملگری است. پس از آن نامساوی مشهور لونر هایز را بهبود بخشیده و صورت جدیدی برای آن ارائه می دهیم. در ادامه با ایجاد ارتباط بین مثبت بودن حاصلضرب متقارن دو عملگر مثبت و زیر جمعی بو...
نظریه ی مدولارها روی فضاهای خطی در سال 1950 به وسیله ی ناکانو ارائه شد سپس در سال 1959 توسط یامومورو توسعه داده شد. به علاوه توسعه ی کاملی از این نظریه ها توسط ارلیخ و لوگزامبورگ انجام شد. در سال 2008 چیستیاکوف نظریه ای از فضاهای متریک مدولار ارائه داد. در حال حاضر نظریه مدولارها کاربرد گسترده به ویژه در مطالعه ی فضاهای ارلیخ دارد. این پایان نامه مشتمل بر سه فصل است. در فصل اول مفاهیم و قضایای...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید