نتایج جستجو برای: الگوریتم k means

تعداد نتایج: 723945  

Journal: :Theor. Comput. Sci. 2013
Manu Agarwal Ragesh Jaiswal Arindam Pal

The Lloyd’s algorithm, also known as the k-means algorithm, is one of the most popular algorithms for solving the k-means clustering problem in practice. However, it does not give any performance guarantees. This means that there are datasets on which this algorithm can behave very badly. One reason for poor performance on certain datasets is bad initialization. The following simple sampling ba...

2018
Vincent Cohen-Addad

We consider the popular k-means problem in d-dimensional Euclidean space. Recently Friggstad, Rezapour, Salavatipour [FOCS’16] and Cohen-Addad, Klein, Mathieu [FOCS’16] showed that the standard local search algorithm yields a p1`εq-approximation in time pn ̈kq Opdq , giving the first polynomialtime approximation scheme for the problem in low-dimensional Euclidean space. While local search achiev...

2011
Joerg Schmalenstroeer Markus Bartek Reinhold Häb-Umbach

In this paper we propose to jointly consider Segmental Dynamic Time Warping and distance clustering for the unsupervised learning of acoustic events. As a result, the computational complexity increases only linearly with the dababase size compared to a quadratic increase in a sequential setup, where all pairwise SDTW distances between segments are computed prior to clustering. Further, we discu...

Journal: :JCS 2014
Bashar Aubaidan Masnizah Mohd Mohammed Albared

This study presents the results of an experimental study of two document clustering techniques which are kmeans and k-means++. In particular, we compare the two main approaches in crime document clustering. The drawback of k-means is that the user needs to define the centroid point. This becomes more critical when dealing with document clustering because each center point represented by a word ...

ژورنال: :زمین شناسی کاربردی پیشرفته 0
سید سعید قنادپور دانشجوی کارشناسی ارشد دانشکده مهندسی معدن و متالوژی دانشگاه صنعتی امیرکبیر تهران اردشیر هزارخانی استاد دانشکده مهندسی معدن و متالوژی دانشگاه صنعتی امیرکبیر تهران

یکی از دیدگاه­های مهم در علم داده­کاوی برای تحلیل و بررسی روی حجم زیادی از داده­ها و نمونه­ها با مشخصه­های گوناگون، دیدگاه خوشه­بندی می­باشد که خود شامل روش­ها و تکنیک­های مهمی همچون روش سلسله مراتبی، روش میانگین k، روش­های بر مبنای چگالی، روش کوهونن، و غیره در ادبیات موضوع است و تاکنون توسط پژوهشگران مختلف به کار گرفته شده است. یکی از معروف­ترین الگوریتم­های خوشه­بندی، الگوریتم k میانگین (k-me...

2017
Jun Younes Louhi Kasahara Hiromitsu Fujii Atsushi Yamashita Hajime Asama

In this paper we present an online unsupervised method based on clustering to find defects in concrete structures using hammering. First, the initial dataset of sound samples is roughly clustered using the k-means algorithm with the k-means++ seeding procedure in order to find the cluster best representative of the structure. Then the regular model for the hammering sound, the centroid of this ...

Journal: :Appl. Soft Comput. 2012
Fouad Khan

K-means is one of the most widely used clustering algorithms in various disciplines, especially for large datasets. However the method is known to be highly sensitive to initial seed selection of cluster centers. K-means++ has been proposed to overcome this problem and has been shown to have better accuracy and computational efficiency than k-means. In many clustering problems though –such as w...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده فنی 1393

در این تحقیق به طراحی و پیاده سازی سیستم پایلوت فروش متقاطع در صنعت بیمه ایران پرداخته شده است. بدین منظور از مدل rfm برای تحلیل ارزش مشتریان یکی از شرکت های بیمه ای بزرگ استفاده شده است. مشتریان این شرکت براساس سه متغیر تازگی، تکرار و ارزش پولی بخش بندی شده اند. پس از محاسبه این متغیرها، با استفاده از الگوریتم¬های k-means و fuzzy c-mean مشتریان خوشه بندی شده¬اند. هم چنین وزن هریک از این متغیره...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->