Let S = K[x1, . . . , xn], let A, B be finitely generated graded S-modules, and let m = (x1, . . . , xn) ⊂ S. We give bounds for the regularity of the local cohomology of Tork (A, B) in terms of the graded Betti numbers of A and B, under the assumption that dim Tor1 (A, B) ≤ 1. We apply the results to syzygies, Gröbner bases, products and powers of ideals, and to the relationship of the Rees an...