نتایج جستجو برای: u87mg
تعداد نتایج: 716 فیلتر نتایج به سال:
Introduction: Glioblastoma multiforme (GBM) has a poor prognosis despite optimal treatment. Recent studies have shown the potential of phytochemicals as anti-cancer agents. α-solanine, derived from plants Solanum genus, is promising molecule in this regard. This study investigated efficacy α-solanine compared to temozolomide (TMZ) against GBM cell lines (U87MG, U251, and T98G) vitro.
 Meth...
Allicin, the main flavor compound in garlic, has anti-carcinogenic activities in a range of cancer cells, however, the underlying molecular mechanisms are not completely understood. This study examined the effect of allicin on the cell viability of U87MG human glioma cells along with its molecular mechanisms of induction of cell death. Apoptosis w...
We developed the photo-crosslinkable hydrogel microfluidic co-culture device to study photothermal therapy and cancer cell migration. To culture MCF7 human breast carcinoma cells and metastatic U87MG human glioblastoma in the microfluidic device, we used 10 w/v% gelatin methacrylate (GelMA) hydrogels as a semi-permeable physical barrier. We demonstrated the effect of gold nanorod on phototherma...
Glioblastoma is the most common primary malignancy of the adult central nervous system and is associated with a markedly poor prognosis. Elucidating the pathogenesis and molecular changes will assist in further understanding the pathogenesis and progression of the disease and offer novel targets for therapies. The present study demonstrated that the expression level of GK5 was lower in high-gra...
Four new spirostanol saponins, named pavitnosides A-D (1-4), with six known steroidal saponins 5-10 were isolated from the rhizomes of Paris vietnamensis. Their chemical structures were determined based on extensive spectroscopic studies and chemical methods. The aglycones of pavitnoside B and pavitnoside C were not reported in previous work. The cytotoxicity of all saponins was evaluated again...
BACKGROUND To investigate the molecular basis for invasion of malignant gliomas, proteomic analysis approach was carried out using two human glioma cell lines, U87MG and U343MG-A that demonstrate different motility and invasiveness in in vitro experiments. METHODS High-resolution two-dimensional gel electrophoresis and matrix-assisted laser-desorption/ionization time-of-flight mass spectromet...
The small GTPase Rac1 is thought to play an important role in cell migration and invasion. We have previously identified synaptojanin 2, a phosphoinositide phosphatase, as an effector of Rac1. Here, we show that small interfering RNA-mediated depletion of either Rac1 or synaptojanin 2 inhibits invasion of SNB19 and U87MG glioblastoma cells through Matrigel and rat brain slices. Depletion of Rac...
Objective: Antiangiogenesis therapy (AAT) has provided substantial benefits regarding improved outcomes and survival for suitable patients in clinical settings. Therefore, the early definition of therapeutic effects is urgently needed to guide cancer AAT. We aimed to optimize the early response monitoring and prediction of AAT efficacy, as indicated by the multi-targeted anti-angiogenic drug su...
This study sought to evaluate the impact of multiple negative charges on blood clearance kinetics and biodistribution properties of (99m)Tc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu in the presence of diisopropylethylamine. Their IC50 values were determined to be 31 ± 5 and 41 ...
PURPOSE Targeted radiotherapy (TRT) is an emerging approach for tumor treatment. Previously, 3PRGD2 (a dimeric RGD peptide with 3 PEG4 linkers) has been demonstrated to be of advantage for integrin αvβ3 targeting. Given the promising results of (99m)Tc-3PRGD2 for lung cancer detection in human beings, we are encouraged to investigate the radiotherapeutic efficacy of radiolabeled 3PRGD2. The goa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید