Let iX, 03, m) be a finite measure space. We shall denote by L*im) (1 èp< °°) the Banach space of all real-valued (B-measurable functions/ defined on X such that |/[ p is m-integrable, and by L°°(w) the Banach space of all real-valued, (B-measurable, w-essentially bounded functions defined on X; as usual, the norm in Lpim) is given by 11/11,.= {fx\fix)\pdm}1'*, and the norm in Lxim) by \\g\\x =...