نتایج جستجو برای: spectral element method

تعداد نتایج: 1898930  

Journal: :J. Comput. Physics 2014
Mark Ainsworth

We study the ability of high order numerical methods to propagate discrete waves at the same speed as the physical waves in the case of the one-way wave equation. A detailed analysis of the finite element method is presented including an explicit form for the discrete dispersion relation and a complete characterisation of the numerical Bloch waves admitted by the scheme. A comparision is made w...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم 1391

تحقیقات اخیر روی روشهای عددی‏، بر ایده استفاده از روشهای بدون شبکه‎{meshfree methods}‎ برای حل عددی معادلات دیفرانسیل با مشتقات جزئی تاکید‏ می کند. یکی از ویژگی های رایج همه روشهای بدون شبکه، توانایی آنها در ساخت تقریب تابع، تنها با استفاده از اطلاعاتی در یک مجموعه از داده های پراکنده می باشد. تعدادی از روشهای بدون شبکه عبارتند از: روش هیدرودینامیکهای ذره ی هموار‎{smooth particle hydrodynamics ...

Journal: :SIAM J. Scientific Computing 2006
Alfonso Bueno-Orovio Víctor M. Pérez-García Flavio H. Fenton

In this paper, we propose a numerical method to approximate the solution of partial differential equations in irregular domains with no-flux boundary conditions by means of spectral methods. The main features of this method are its capability to deal with domains of arbitrary shape and its easy implementation via Fast Fourier Transform routines. We discuss several examples of practical interest...

Journal: :J. Sci. Comput. 2008
Sébastien Loisel Reinhard Nabben Daniel B. Szyld

J. Lottes and P. Fischer in [J. Sci. Comput., 24:45–78, 2005] studied many smoothers or preconditioners for hybrid Multigrid-Schwarz algorithms for the spectral element method. The behavior of several of these smoothers or preconditioners are analyzed in the present paper. Here it is shown that the Schwarz smoother that best performs in the above reference, is equivalent to a special case of th...

Journal: :SIAM J. Numerical Analysis 2005
Marcus Calhoun-Lopez Max Gunzburger

It is well known that the classic Galerkin finite element method is unstable when applied to hyperbolic conservation laws such as the Euler equations for compressible flow. It is also well known that naively adding artificial diffusion to the equations stabilizes the method but sacrifices too much accuracy to be of any practical use. An elegant approach, referred to as spectral viscosity method...

Journal: :J. Sci. Comput. 2005
Li-Lian Wang Jie Shen

Standard spectral methods are capable of providing very accurate approximations to well-behaved smooth functions with significantly less degrees of freedom when compared with finite difference or finite element methods (cf. [6,7,11]). However, if a function exhibits localized behaviors such as sharp interfaces, very thin internal or boundary layers, using a standard Gauss-type grid usually fail...

Journal: :J. Comput. Physics 2007
Marcus Calhoun-Lopez Max Gunzburger

It is well known that the classic Galerkin finite element method is unstable when applied to hyperbolic conservation laws such as the Euler equations for compressible flows. Adding a diffusion term to the equations stabilizes the method but sacrifices too much accuracy to be of any practical use. An elegant solution developed in the context of spectral methods by Eitan Tadmor and coworkers is t...

2003
PRAVIR DUTT SATYENDRA TOMAR Pravir Dutt Satyendra Tomar

In this paper we show that the h-p spectral element method developed in [3,8,9] applies to elliptic problems in curvilinear polygons with mixed Neumann and Dirichlet boundary conditions provided that the Babuska–Brezzi inf–sup conditions are satisfied. We establish basic stability estimates for a non-conforming h-p spectral element method which allows for simultaneous mesh refinement and variab...

2010
Sandrine Mouysset Joseph Noailles Daniel Ruiz

Spectral clustering methods use eigenvectors of a matrix, called Gaussian affinity matrix, in order to define a low-dimensional space in which data points can be clustered. This matrix is widely used and depends on a free parameter σ. It is usually interpreted as some discretization of the Heat Equation Green kernel. Combining tools from Partial Differential Equations and Finite Elements theory...

2011
M. B. Davis G. F. Carey

A parallel element-by-element ,nultilevel strategy is developed and applied to two nonlinear, coupled PDE system.•. Spectral (p) finite elements are used to discretize the lems and the multilevel solution strategy uses projections between bases of different degree (level). The projection methods for the p-multilevel schemes are developed and analyzed for Lagrange and hierarchic bases. The appro...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید